精英家教网 > 高中数学 > 题目详情

【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”,为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研,人社部从网上年龄在岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:

(1)由以上统计数据填列联表,并判断是否95%的把握认为以岁为界点的不同人群对“延迟退休年龄政策”的支持有差异;

(2)若以岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取人参加某项活动,现从这人中随机抽人.

①抽到人是岁以下时,求抽到的另一人是岁以上的概率;

②记抽到岁以上的人数为,求随机变量的分布列及数学期望.

【答案】(1)有的把握(2)①②见解析

【解析】试题分析:(1)由所给表格和频率分布直方图填出列联表,进一步求出,利用所给数据结合独立性检验内容可得结论;(2)利用古典概型可求抽到人是岁以下时,抽一的另一人是岁以上的概率,对于,写出其所有可能取值,求出对应概率,做出分布列,再求出数学期.试题解析:

因为

所以有的把握认为以岁为分界点的不同人群对“延迟退休政策”的支持度有差异.

(2)①抽到1人是岁以下的概率,抽到1人 以上的应抽人,故所求概率为.

,

,

可得随机变量的分布列为

故数学期望为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数)有两个极值点,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 的定义域为集合A,函数g(x)=( x(﹣1≤x≤0)的值域为集合B.
(1)求A∩B;
(2)若集合C=[a,2a﹣1],且C∪B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}的前n项和记为Sn , 已知a10=30,a20=50.
(1)求通项{an};
(2)令Sn=242,求n.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg(ax﹣bx)(a>1>b>0).
(1)求f(x)的定义域;
(2)若f(x)在(1,+∞)上递增且恒取正值,求a,b满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x2﹣1)定义域为[0,3],则f(2x﹣1)的定义域为(
A.[1, ]
B.[0, ]
C.[﹣3,15]
D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品生产厂家生产一种产品,每生产这种产品x(百台),其总成本为G(x)(万元),其中固定成本为42万元,且每生产1百台的生产成本为15万元(总成本=固定成本+生产成本).销售收入R(x)(万元)满足 假定该产品产销平衡(即生产的产品都能卖掉),根据上述规律,完成下列问题:
(1)写出利润函数y=f(x)的解析式(利润=销售收入﹣总成本);
(2)要使工厂有盈利,求产量x的范围;
(3)工厂生产多少台产品时,可使盈利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】问题“求方程5x+12x=13x的解”有如下的思路:方程5x+12x=13x可变为( x+( x=1,考察函数f(x)=( x+( x可知f(2)=1,且函数f(x)在R上单调递减,所以原方程有唯一解x=2.仿照此解法可得到不等式:lgx﹣4>2lg2﹣x的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答题
(1)若抛物线的焦点是椭圆 左顶点,求此抛物线的标准方程;
(2)若某双曲线与椭圆 共焦点,且以 为渐近线,求此双曲线的标准方程.

查看答案和解析>>

同步练习册答案