A. | $\frac{f(2)}{f(1)}<16$ | B. | $\frac{f(2)}{f(1)}<8$ | C. | $\frac{f(2)}{f(1)}<4$ | D. | $\frac{f(2)}{f(1)}<2$ |
分析 令g(x)=$\frac{f(x)}{{x}^{4}}$,(x>0),求出函数的导数,得到函数的单调性,求出g(1)>g(2),从而求出答案.
解答 解:令g(x)=$\frac{f(x)}{{x}^{4}}$,(x>0),
则g′(x)=$\frac{xf′(x)-4f(x)}{{x}^{5}}$,
∵不等式xf'(x)<4f(x)恒成立,
∴xf'(x)-4f(x)<0,即g′(x)<0,
g(x)在(0,+∞)递减,
故g(1)>g(2),
故$\frac{f(2)}{f(1)}$<16,
故选:A.
点评 本题考查了函数的单调性问题,考查导数的应用,构造函数g(x)是解题的关键,本题是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | 4 | C. | 8 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | $\sqrt{3}$ | C. | 2 | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com