精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,平面区域W中的点的坐标(x,y)满足x2+y2≤4,从区域W中随机取点M(x,y);
(Ⅰ)若x∈Z,y∈Z,令ξ=x2+y2,求ξ的分布列与数学期望;
(Ⅱ)已知直线l:y=-x+b(b>0)与圆x2+y2=4相交所截得的弦长为2,求y≥-x+b的概率.
【答案】分析:(I)先一一列举出平面区域W中的整点的个数,再看看在第四象限的有多少个点,最后利用概率公式计算即得;
(II)因满足:“y≥-x+b”的平面区域是一个弓形区域,欲求y≥-x+b的概率,只须求出弓形区域的面积与圆的面积之比即可.
解答:解:(Ⅰ)若x∈Z,y∈Z,则点M的个数共有21个,
列举如下:(-2,0),(-1,-1),(-1,0),(-1,1),(0,-2),(0,-1),(0,0),(0,1),(0,2),(1,-1),(1,0),(1,1),(2,0).
∴p(ξ=0)=,p(ξ=1)=,p(ξ=2)=,p(ξ=4)=
∴ξ的分布列为
ξ 01 24
P    
∴Eξ=
(Ⅱ)由已知可知区域W的面积是4π.
直线l:y=-x+b(b>0)与圆x2+y2=4相交所截得的弦长为2

如图,可求得扇形的圆心角为
所以扇形的面积为
则满足y≥-x+b的点M构成的区域的面积为,所以y≥-x+b的概率为
点评:本题主要考查了古典概型和几何概型,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案