精英家教网 > 高中数学 > 题目详情
已知在锐角三角形ABC中,sin(A+B)=
3
5
,sin(A-B)=
1
5

(1)求证:tanA=2tanB;
(2)求tanA的值.
考点:两角和与差的正弦函数,同角三角函数基本关系的运用
专题:三角函数的求值
分析:(1)把已知的两等式分别利用两角和与差的正弦函数公式化简,将化简后的两等式组成方程组,两方程相加相减可得出sinAcosB及cosAsinB的值,两式相除并利用同角三角函数间的基本关系可得到tanA与tanB的关系;
(2)由三角形为锐角三角形,得到C的范围,根据三角形的内角和定理得出A+B的范围,由sin(A+B)的值,利用同角三角函数间的基本关系求出cos(A+B)的值,再利用同角三角函数间的基本关系弦化切求出tan(A+B)的值,然后利用两角和与差的正切函数公式化简tan(A+B),将得出的tanA的关系式代入得到关于tanB的方程,求出方程的解即可得到tanB的值.从而可求tanA的值.
解答: 解:(1)由sin(A+B)=
3
5
,sin(A-B)=
1
5
.得:
sinAcosB+cosAsinB=
3
5
sinAcosB-cosAsinB=
1
5

2式相加得:2sinAcosB=
4
5
,即sinAcosB=
2
5
③,
2式相减得:2cosAsinB=
2
5
,即cosAsinB=
1
5
④,
③÷④得:
tanA
tanB
=2,即tanA=2tanB,
(2)∵锐角△ABC,∴0<C<
π
2

π
2
<A+B<π,又sin(A+B)=
3
5

∴cos(A+B)=-
1-sin2(A+B)
=-
4
5

∴tan(A+B)=-
3
4
,即
tanA+tanB
1-tanAtanB
=-
3
4

将tanA=2tanB代入上式并整理得:2tan2B-4tanB-1=0,
解得:tanB=
2+
6
2
或tanB=
2-
6
2
(舍去),
则tanB=
2+
6
2

∴tanA=2tanB=2+
6
点评:此题考查了两角和与差的正弦、正切函数公式,同角三角函数间的基本关系,熟练掌握公式及基本关系是解本题的关键,同时注意锐角三角形这个条件,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={1,2,x},B={1,x2},若A∪B=A,求满足条件的实数x的取值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数的值域为[1,+∞)的是(  )
A、y=(
1
2
x-1
B、y=(
1
2
x+1
C、y=log2(x2-2x+2)
D、y=log2(x2-2x+3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x)满足f(x+2)=f(x),且当x∈(0,1)时,f(x)=tan
πx
2
,则f(x)在[0,5]上的零点个数是(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥p-ABCD中,面PAB⊥面ABCD,且BC∥AD,BC⊥AB,且PA=PB=4,AB=2,BC=1,AD=3,O为AB的中点.
(1)证明:面PCD⊥面POC;
(2)在PD上确定一点E使OE∥面PBC,求点E的位置;
(2)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=esinx(π≤x≤π)的图象大致为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

设A为△ABC内角,满足sinA+cosA=a,当-1<a<0时,则△ABC是
 
三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个棱锥的三视图如图,则该棱锥的体积是(  )
A、
8
3
B、
4
3
C、4
D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=3,a2=2,当n≥2时,an+1是an•an-1的个位数,则a2013=
 

查看答案和解析>>

同步练习册答案