【题目】随着智能手机的普及,手机计步软件迅速流行开来,这类软件能自动记载每日健步走的步数,从而为科学健身提供了一定帮助.某企业为了解员工每日健步走的情况,从该企业正常上班的员工中随机抽取300名,统计他们的每日健步走的步数(均不低于4千步,不超过20千步).按步数分组,得到频率分布直方图如图所示.
(1)求这300名员工日行步数(单位:千步)的样本平均数(每组数据以该组区间的中点值为代表,结果保留整数);
(2)由直方图可以认为该企业员工的日行步数(单位:千步)服从正态分布,其中为样本平均数,标准差的近似值为2,求该企业被抽取的300名员工中日行步数的人数;
(3)用样本估计总体,将频率视为概率.若工会从该企业员工中随机抽取2人作为“日行万步”活动的慰问奖励对象,规定:日行步数不超过8千步者为“不健康生活方式者”,给予精神鼓励,奖励金额为每人0元;日行步数为8~14千步者为“一般生活方式者”,奖励金额为每人100元;日行步数为14千步以上者为“超健康生活方式者”,奖励金额为每人200元.求工会慰问奖励金额(单位:元)的分布列和数学期望.
附:若随机变量服从正态分布,则,,.
【答案】(1) 12 (2) 47 (3) 分布列见解析,
【解析】
(1) 用每组数据中该组区间的中点值为代表,利用公式直接可求解.
(2)由题意得,求出即可求解出答案.
(3)由频率分布直方图可知每人获得奖金额为0元的概率为0.02,每人获得奖金额为100元的概率为:0.88,每人获得奖金额为200元的概率为:,的取值为0,100,200,300,400.
分布求出概率,列出分布列,求出数学期望.
(1) 由题意有
(千步)
(2)由,由(1)得
所以
所以300名员工中日行步数的人数:.
(3)由频率分布直方图可知:
每人获得奖金额为0元的概率为:.
每人获得奖金额为100元的概率为:
每人获得奖金额为200元的概率为:
的取值为0,100,200,300,400.
所以的分布列为:
0 | 100 | 200 | 300 | 400 | |
0.0004 | 0.0352 | 0.7784 | 0.176 | 0.01 |
(元)
科目:高中数学 来源: 题型:
【题目】如图,分别过椭圆左、右焦点的动直线相交于点,与椭圆分别交于与不同四点,直线的斜率满足.已知当与轴重合时,,.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在定点,使得为定值?若存在,求出点坐标并求出此定值;若不存在,说明理由.
【答案】(Ⅰ);(Ⅱ),和.
【解析】试题分析:(1)当与轴重合时,垂直于轴,得,得,从而得椭圆的方程;(2)由题目分析如果存两定点,则点的轨迹是椭圆或者双曲线 ,所以把坐标化,可得点的轨迹是椭圆,从而求得定点和点.
试题解析:当与轴重合时,, 即,所以垂直于轴,得,,, 得,椭圆的方程为.
焦点坐标分别为, 当直线或斜率不存在时,点坐标为或;
当直线斜率存在时,设斜率分别为, 设由, 得:
, 所以:,, 则:
. 同理:, 因为
, 所以, 即, 由题意知, 所以
, 设,则,即,由当直线或斜率不存在时,点坐标为或也满足此方程,所以点在椭圆上.存在点和点,使得为定值,定值为.
考点:圆锥曲线的定义,性质,方程.
【方法点晴】本题是对圆锥曲线的综合应用进行考查,第一问通过两个特殊位置,得到基本量,,得,,从而得椭圆的方程,第二问由题目分析如果存两定点,则点的轨迹是椭圆或者双曲线 ,本题的关键是从这个角度出发,把坐标化,求得点的轨迹方程是椭圆,从而求得存在两定点和点.
【题型】解答题
【结束】
21
【题目】已知,,.
(Ⅰ)若,求的极值;
(Ⅱ)若函数的两个零点为,记,证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】虚拟现实()技术被认为是经济发展的新增长点,某地区引进技术后,市场收入(包含软件收入和硬件收入)逐年翻一番,据统计该地区市场收入情况如图所示,则下列说法错误的是( )
A.该地区2019年的市场总收入是2017年的4倍
B.该地区2019年的硬件收入比2017年和2018年的硬件收入总和还要多
C.该地区2019年的软件收入是2018年的软件收入的3倍
D.该地区2019年的软件收入是2017年的软件收入的6倍
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|x﹣a|+|x|(a>0).
(1)若不等式f(x)﹣| x|≥4x的解集为{x|x≤1},求实数a的值;
(2)证明:f(x).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于很多人来说,提前消费的认识首先是源于信用卡,在那个工资不高的年代,信用卡绝对是神器,稍微大件的东西都是可以选择用信用卡来买,甚至于分期买,然后慢慢还!现在银行贷款也是很风靡的,从房贷到车贷到一般的现金贷.信用卡“忽如一夜春风来”,遍布了各大小城市的大街小巷.为了解信用卡在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了100人进行抽样分析,得到如下列联表(单位:人)
经常使用信用卡 | 偶尔或不用信用卡 | 合计 | |
40岁及以下 | 15 | 35 | 50 |
40岁以上 | 20 | 30 | 50 |
合计 | 35 | 65 | 100 |
(1)根据以上数据,能否在犯错误的概率不超过0.10的前提下认为市使用信用卡情况与年龄有关?
(2)①现从所抽取的40岁及以下的网民中,按“经常使用”与“偶尔或不用”这两种类型进行分层抽样抽取10人,然后,再从这10人中随机选出4人赠送积分,求选出的4人中至少有3人偶尔或不用信用卡的概率;
②将频率视为概率,从市所有参与调查的40岁以上的网民中随机抽取3人赠送礼品,记其中经常使用信用卡的人数为,求随机变量的分布列、数学期望和方差.
参考公式:,其中.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的离心率为且经过点
(1)求椭圆C的方程;
(2)过点(0,2)的直线l与椭圆C交于不同两点A、B,以OA、OB为邻边的平行四边形OAMB的顶点M在椭圆C上,求直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com