精英家教网 > 高中数学 > 题目详情
7、奇函数f(x)满足对任意x∈R都有f(2+x)+f(2-x)=0,且f(1)=9,则f(2010)+f(2011)+f(2012)的值为(  )
分析:将已知等式移项,利用奇函数的定义得到函数的周期;通过给已知等式的x赋值0求出f(2)的值;利用奇函数的定义得到f(0)得到值;利用周期性求出f(2010)+f(2011)+f(2012)的值.
解答:解:∵f(2+x)+f(2-x)=0
∴f(2+x)=-f(2-x)
∵f(x)为奇函数
∴f(2+x)=f(x-2);f(0)=0
∴f(x)是以T=4为周期的函数
∵2010=4×502+2;2011=4×503-1;2012=4×503
∵(2+x)+f(2-x)=0
令x=0得f(2)=0
∴f(2010)+f(2011)+f(2012)=f(2)+f(-1)+f(0)=-9
答案为:-9.
故选A.
点评:本题考查通过奇函数的定义及周期函数的定义求函数的周期、考查通过赋值法求特定的函数值、考查利用周期性求函数的值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

13、奇函数f(x)满足对任意x∈R都有f(2+x)+f(2-x)=0,且f(1)=9,则f(2010)+f(2011)+f(2012)的值为
-9

查看答案和解析>>

科目:高中数学 来源: 题型:

12、奇函数f(x)满足对任意x∈R都有f(x+2)=-f(x)成立,且f(1)=8,则f(2008)+f(2009)+f(2010)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

奇函数f(x)满足对任意x∈R都有f(4+x)+f(-x)=0,且f(1)=9则f(2011)+f(2012)+f(2013)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•日照一模)已知定义在R上奇函数f(x)满足①对任意x,都有f(x+3)=f(x)成立;②当x∈[0,
3
2
]
f(x)=
3
2
-|
3
2
-2x|
,则f(x)=
1
|x|
在[-4,4]上根的个数是(  )

查看答案和解析>>

同步练习册答案