精英家教网 > 高中数学 > 题目详情

【题目】设m,n为平面α外两条直线,其在平面α内的射影分别是两条直线m1和n1,给出下列4个命题:①m1∥n1m∥n;②m∥nm1与n1平行或重合;③m1⊥n1m⊥n;④m⊥nm1⊥n1.其中所有假命题的序号是_____

【答案】①②③④

【解析】

根据空间中直线与直线的位置关系可逐项判断,得出结果.

①两条异面直线在平面的射影可能平行,则两条直线不平行,故①错误,

②若,则平行或重合或是两个点,故②错误.

③因为一个锐角在一个平面上的投影可以为直角,反之在平面内的射影垂直的两条直线所成的角可以是锐角,故③错误.

④两条垂直的直线在一个平面内的射影可以是两条平行直线,也可以是一条直线和一个点等其他情况,故④错误.故假命题是①②③④,

故答案为:①②③④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】名学生排成一排,求分别满足下列条件的排法种数,要求列式并给出计算结果.

(1)甲不在两端;

(2)甲、乙相邻;

(3)甲、乙、丙三人两两不得相邻;

(4)甲不在排头,乙不在排尾。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是函数的图象上的一点,等比数列的前项和为,数列的首项为,且前项和满足:.

1)求数列的通项公式;

2)若数列的通项,求数列的前项和

3)若数列的前项和为,是否存在最大的整数,使得对任意的正整数n,均有总成立?若成立,求出t;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某种细菌的适宜生长温度为,为了研究该种细菌的繁殖数量(单位:个)随温度(单位:)变化的规律,收集数据如下:

温度/

12

14

16

18

20

22

24

繁殖数量/个

20

25

33

27

51

112

194

对数据进行初步处理后,得到了一些统计量的值,如下表所示:

18

66

3.8

112

4.3

1428

20.5

其中.

(1)请绘出关于的散点图,并根据散点图判断哪一个更适合作为该种细菌的繁殖数量关于的回归方程类型(结果精确到0.1);

(2)当温度为时,该种细菌的繁殖数量的预报值为多少?

参考公式:对于一组数据,其回归线的斜率和截距的最小二乘估计分别为:.参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网站用“100分制调查一社区人们的幸福度.现从调查人群中随机抽取10名,以下茎叶图记录了他们的幸福度分数(以十位数字为茎,个位数字为叶);若幸福度不低于95分,则称该人的幸福度为极幸福

1)从这10人中随机选取3人,记表示抽到极幸福的人数,求的分布列及数学期望;

2)以这10人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到极幸福的人数,求的数学期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为等腰梯形,,其中点在以为直径的圆上,,平面平面.

1)证明:平面.

2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的二项展开式中,所有项的二项式系数之和为.

1)求展开式的常数项:

2)求展开式中所有奇数项的系数和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个顶点是,离心率为

)求椭圆的方程;

)已知矩形的四条边都与椭圆相切,设直线AB方程为,求矩形面积的最小值与最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一半径为的水轮,水轮圆心距离水面2,已知水轮每分钟转动(按逆时针方向)3圈,当水轮上点从水中浮现时开始计时,即从图中点开始计算时间.

(1)当秒时点离水面的高度_________

(2)将点距离水面的高度(单位: )表示为时间(单位: )的函数,则此函数表达式为_______________ .

查看答案和解析>>

同步练习册答案