精英家教网 > 高中数学 > 题目详情

已知:以点C (t, )(t∈R , t ≠ 0)为圆心的圆与轴交于点O, A,与y轴交于点O, B,其中O为原点.
(Ⅰ)求证:△OAB的面积为定值;
(Ⅱ)设直线y = –2x+4与圆C交于点M, N,若|OM| = |ON|,求圆C的方程.

(1)(2)

解析试题分析:解 (1)
设圆的方程是 
,得;令,得
,即:的面积为定值.……5分
(2)垂直平分线段
直线的方程是
,解得:   ……7分
时,圆心的坐标为,  
此时到直线的距离
与直线相交于两点. ……10分
时,圆心的坐标为
此时到直线的距离与直线不相交,
不符合题意舍去.
的方程为 ……10分
考点:三角形的面积,圆的方程
点评:解决的关键是根据截距来得到面积的表示,以及借助于圆心和半径求解圆的方程,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知圆,直线 与圆交与两点,点.
(1)当时,求的值;
(2)当时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C经过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为4,半径小于5.
(Ⅰ)求直线PQ与圆C的方程;
(Ⅱ)若直线l∥PQ,直线l与圆C交于点A,B且以线段AB为直径的圆经过坐标原点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设直线和圆相交于点
(1)求弦的垂直平分线方程;(2)求弦的长。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线经过点,且和圆相交,截得的弦长为4,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

动圆M过定点A(-,0),且与定圆A´:(x)2y2=12相切.

(1)求动圆圆心M的轨迹C的方程;
(2)过点P(0,2)的直线l与轨迹C交于不同的两点E、F,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知圆,圆

(1)若过点的直线被圆截得的弦长为,求直线的方程;
(2)设动圆同时平分圆、圆的周长.
①求证:动圆圆心在一条定直线上运动;
②动圆是否过定点?若过,求出定点的坐标;若不过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

平面直角坐标系中,直线截以原点为圆心的圆所得的弦长为
(1)求圆的方程;
(2)若直线与圆切于第一象限,且与坐标轴交于,当长最小时,求直线的方程;
(3)问是否存在斜率为的直线,使被圆截得的弦为,以为直径的圆经过原点.若存在,写出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆和直线
(1) 求证:不论取什么值,直线和圆总相交;
(2) 求取何值时,圆被直线截得的弦最短,并求最短弦的长.

查看答案和解析>>

同步练习册答案