精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx2+cx+d的图象如图所示,k∈R,则f(k)+f(-k)的值一定(  )
分析:由图象可知:经过原点,可得f(0)=0=d,即f(x)=ax3+bx2+cx.于是f(k)+f(-k)=2bk2.由图象可得:函数f(x)在[-1,1]上单调递减,函数f(x)在x=-1处取得极大值.可得f′(x)≤0在[-1,1]上恒成立,且f′(-1)=0.即可得到b<0,进而得出结论.
解答:解:由图象可知:经过原点,∴f(0)=0=d,
∴f(x)=ax3+bx2+cx.
∴f(k)+f(-k)=2bk2
由图象可得:函数f(x)在[-1,1]上单调递减,函数f(x)在x=-1处取得极大值.
∴f′(x)=3ax2+2bx+c≤0在[-1,1]上恒成立,且f′(-1)=0.
得到3a-2b+c=0,f′(1)=3a+2b+c<0,
两式相加得到b<0,
∴f(k)+f(-k)=2bk2≤0.
故选D.
点评:本题综合考查了利用导数研究函数的单调性极值、数形结合等基础知识与基本方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案