精英家教网 > 高中数学 > 题目详情

在正项等比数列{an}中,若a2+a3=8,a4+a5=2,则a5+a6=


  1. A.
    4
  2. B.
    3
  3. C.
    2
  4. D.
    1
D
分析:,a5+a6=(a4+a5)q.
解答:设正项等比数列{an}的公比为q,


故选D.
点评:本题考查了等比数例的通项公式,解题过程运用了整体运算技巧,解法方便快捷.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在正项等比数列{ an }中,若a2•a4•a6=8,则log2a5-
1
2
log2a6=(  )
A、
1
8
B、
1
6
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在正项等比数列an中,a1<a4=1,若集合A={n|(a1-
1
a1
)+(a2-
1
a2
)+…+(an-
1
an
)≤0,n∈N*}
,则集合A中元素的个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在正项等比数列{an}中,若S2=7,S6=91,则S4的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•楚雄州模拟)在正项等比数列{an}时,a1和a19为方程x2-10x+16=0的两根,则a8•a10•a12等于
64
64

查看答案和解析>>

科目:高中数学 来源: 题型:

在正项等比数列{an}中,Sn为其前n项和,a3=2,S4=5S2,则a5=
8
8

查看答案和解析>>

同步练习册答案