精英家教网 > 高中数学 > 题目详情
12.{an}是等差数列,{bn}是等比数列,Tn是{bn}的前n项和,a1=b1=1,且满足$\sqrt{{a_2}+2}+\sqrt{{b_2}-2}=2\sqrt{2}$,当a2+b2取最小值时,
(1)求Tn
(2)Sn是{|an|}的前n项和,求Sn

分析 利用柯西不等式(a2+2+b2-2)(1+1)≥($\sqrt{{a}_{2}+2}+\sqrt{{b}_{2}-2}$)2=8,可得(a2+b2min=4,此时a2+2=b2-2,可得a2,b2,及等比数列{bn}的公比,等差数列{an}的公差
(1)直接用公式求Tn
(2)|a1|=1,n≥2时,|an|=n-2,再求Sn

解答 解:利用柯西不等式(a2+2+b2-2)(1+1)≥($\sqrt{{a}_{2}+2}+\sqrt{{b}_{2}-2}$)2=8,
∴(a2+b2min=4,此时a2+2=b2-2,a2=0,b2=4,
∴等比数列{bn}的公比为4,等差数列{an}的公差为-1
(1)Tn=$\frac{1×(1-{4}^{n})}{1-4}=\frac{1}{3}({4}^{n}-1)$
(2)|a1|=1,n≥2时,|an|=n-2,{|an|}的前n项和Sn
Sn=$\left\{\begin{array}{l}{1\\;\\;(n=1)}\\{1+\frac{(n-1)(0+n-2)}{2}=\frac{{n}^{2}-3n+4}{2}\\;(n≥2)}\end{array}\right.$

点评 .本题考查了等差、等比数列的通项及性质,求和公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.在平面直角坐标系中,点P为椭圆$\frac{{x}^{2}}{3}$+y2=1上的一个动点,则点P到直线x-y+6=0的最大距离为4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.A城市的出租车计价方式为:若行程不超过3千米,则按“起步价”10元计价;若行程超过3千米,则之后2千米以内的行程按“里程价”计价,单价为1.5元/千米;若行程超过5千米,则之后的行程按“返程价”计价,单价为2.5元/千米.设某人的出行行程为x千米,现有两种乘车方案:①乘坐一辆出租车;②每5千米换乘一辆出租车.
(Ⅰ)分别写出两种乘车方案计价的函数关系式;
(Ⅱ)对不同的出行行程,①②两种方案中哪种方案的价格较低?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知x>-1,则$x+\frac{4}{x+1}$的最小值为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.-1,a1,a2,-4成等差数列,-1,b,-4成等比数列,则$\frac{{{a_2}+{a_1}}}{b}$=$±\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,在△ABC中,点O是BC的中点,过点O的直线分别交直线AB、AC于不同的两点M、N,若$\overrightarrow{AM}=m\overrightarrow{AB}$,$\overrightarrow{AN}=n\overrightarrow{AC}({mn>0})$,则m+n的取值范围为[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.定义在(0,+∞)上的函数f(x)满足:(1)当$x∈[{\frac{1}{2},1})$时,f(x)=$\frac{1}{2}-|{2x-\frac{3}{2}}$|;(2)f(2x)=2f(x),则关于x的函数F(x)=f(x)-a的零点从小到大依次为x1,x2,…,xn…x2n,若$a∈({\frac{1}{2},1})$,则x1+x2+…+x2n-1+x2n=3×(2n-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设A={x|-1<x<2},B={x|1<x<3},求A∪B,A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}中,a1=2,an=2an-1-1,则通项an=2n-1+1.

查看答案和解析>>

同步练习册答案