精英家教网 > 高中数学 > 题目详情
双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为:A.(1,3);B.(1,3];C.(3,+∞);D.[3,+∞)”其正确选项是B.若将其中的条件“|PF1|=2|PF2|”更换为“|PF1|=k|PF2|,k>0且k≠1”,试经过合情推理,得出双曲线离心率的取值范围是
 
.(用k表示)
分析:开区间前端点是1,关键看后端点的值与|PF2|前边的系数的关系,由3=
2+1
|2-1|
,联想系数为k时,后端点是
k+1
|k-1|
,从而得出答案.
解答:解:∵|PF1|=2|PF2|,则双曲线离心率的取值范围为:A.(1,3); B.(1,3]; C.(3,+∞); D.[3,+∞)”
其正确选项是B,区间前端点为1,后端点为3=
3
1
=
2+1
2-1

若将其中的条件“|PF1|=2|PF2|”更换为“|PF1|=k|PF2|,k>0且k≠1”,试经过合情推理,
得出双曲线离心率的取值范围是开区间,前端点为1,后端点为
k+1
|k-1|

∴双曲线离心率的取值范围是(1,
k+1
|k-1|
)

故答案为(1,
k+1
|k-1|
)
点评:本题考查合情推理的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若点O和点F(-2,0)分别是双曲线
x2
a2
-y2=1(a>0)
的中心和左焦点,点P为双曲线右支上的任意一点,则
OP
FP
的取值范围为(  )
A、[3-2
3
,+∞)
B、[3+2
3
,+∞)
C、[-
7
4
,+∞)
D、[
7
4
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-y2=1(a>0)
的一条准线方程为x=
3
2
,则a等于
 
,该双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设圆C的圆心为双曲线
x2
a2
-y2=1(a>0)
的左焦点,且与此双曲线的渐近线相切,若圆C被直线l:x-y+2=0截得的弦长等于
2
,则a等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若点O和点F(-2,0)分别是双曲线
x2
a2
-y2=1(a>0)的中心和左焦点,点P为双曲线右支上的一点,并且P点与右焦点F′的连线垂直x轴,则线段OP的长为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-y2=1
的一个焦点坐标为(-
3
,0)
,则其渐近线方程为(  )
A、y=±
2
x
B、y=±
2
2
x
C、y=±2x
D、y=±
1
2
x

查看答案和解析>>

同步练习册答案