精英家教网 > 高中数学 > 题目详情

【题目】函数的定义域为,其图象如图所示.函数是定义域为的奇函数,满足,且当时,.给出下列三个结论:

②函数内有且仅有个零点;

③不等式的解集为

其中,正确结论的序号是________

【答案】①③

【解析】

利用奇函数和,得出函数的周期为,由图可直接判断①;利用赋值法求得,结合,进而可判断函数内的零点个数,可判断②的正误;采用换元法,结合图象即可得解,可判断③的正误.综合可得出结论.

因为函数是奇函数,所以

,所以,即

所以,函数的周期为.

对于①,由于函数上的奇函数,所以,,故①正确;

对于②,,令,可得,得

所以,函数在区间上的零点为.

因为函数的周期为,所以函数内有个零点,分别是,故②错误;

对于③,令,则需求的解集,由图象可知,,所以,故③正确.

故答案为:①③.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了更好地贯彻党的五育并举的教育方针,某市要对全市中小学生体能达标情况进行了解,决定通过随机抽样选择几个样本校对学生进行体能达标测试,并规定测试成绩低于60分为不合格,否则为合格,若样本校学生不合格人数不超过其总人数的5%,则该样本校体能达标为合格.已知某样本校共有1000名学生,现从中随机抽取40名学生参加体能达标测试,首先将这40名学生随机分为甲、乙两组,其中甲乙两组学生人数的比为3:2,测试后,两组各自的成绩统计如下:甲组的平均成绩为70,方差为16,乙组的平均成绩为80,方差为36.

1)估计该样本校学生体能测试的平均成绩;

2)求该样本校40名学生测试成绩的标准差s

3)假设该样本校体能达标测试成绩服从正态分布,用样本平均数作为的估计值,用样本标准差s作为的估计值,利用估计值估计该样本校学生体能达标测试是否合格?

(注:1.本题所有数据的最后结果都精确到整数;2若随机变量z服从正态分布,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是圆O的直径,点C是圆O上异于AB的点,直线平面EF分别是的中点.

1)记平面与平面的交线为l,试判断直线l与平面的位置关系,并加以证明;

2)设,求二面角大小的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,,分别是,的中点.

1)求证:平面

2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为为坐标原点,过点的直线交于两点.

1)若直线与圆相切,求直线的方程;

2)若直线轴的交点为,且,试探究:是否为定值.若为定值,求出该定值,若不为定值,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点P与点的距离比它到直线的距离小1.

1)求动点P的轨迹C的方程;

2)设P为直线上任一点,过点P作曲线C的切线,切点分别为AB,直线y轴分别交于MN两点,点的纵坐标分别为mn,求证:mn的乘积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系.以坐标原点为极点,轴正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,点上的动点,的中点.

1)请求出点轨迹的直角坐标方程;

2)设点的极坐标为若直线经过点且与曲线交于点,弦的中点为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正六棱锥中,底面边长和侧棱分别是24分别是的中点,给出下面三个判断:(1所成的角的余弦值为;(2和底面所成的角是;(3)平面平面;其中判断正确的个数是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆周率π是数学中一个非常重要的数,历史上许多中外数学家利用各种办法对π进行了估算.现利用下列实验我们也可对圆周率进行估算.假设某校共有学生N人,让每人随机写出一对小于1的正实数ab,再统计出ab1能构造锐角三角形的人数M,利用所学的有关知识,则可估计出π的值是( )

A.B.C.D.

查看答案和解析>>

同步练习册答案