精英家教网 > 高中数学 > 题目详情
由空间向量基本定理可知,空间任意向量可由三个不共面的向量唯一确定地表示为,则称(x,y,z)为基底下的广义坐标.特别地,当为单位正交基底时,(x,y,z)为直角坐标.设分别为直角坐标中x,y,z正方向上的单位向量,则空间直角坐标(1,2,3)在基底下的广义坐标为   
【答案】分析:欲求空间直角坐标(1,2,3)在基底下的广义坐标,即对于平面向量,存在唯一的实数对p,q,r,使得=,据此列出关于p,q,r的方程求解即可.
解答:解:根据平面向量基本定理,空间直角坐标(1,2,3)对应的向量为
由于=
则空间直角坐标(1,2,3)在基底下的广义坐标为(
故答案为:().
点评:本题考查平面向量正交分解的应用,考查一个新定义问题,考查学生的理解能力和应变能力,是一个比较好的题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

由空间向量基本定理可知,空间任意向量
p
可由三个不共面的向量
a
b
c
唯一确定地表示为
p
=x
a
+y
b
+z
c
,则称(x,y,z)为基底
a
b
c
下的广义坐标.特别地,当
a
b
c
为单位正交基底时,(x,y,z)为直角坐标.设
i
j
k
分别为直角坐标中x,y,z正方向上的单位向量,则空间直角坐标(1,2,3)在基底
i
+
j
i
-
j
k
下的广义坐标为
3
2
,-
1
2
,3
3
2
,-
1
2
,3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

由空间向量基本定理可知,空间任意向量
p
可由三个不共面的向量
a
b
c
唯一确定地表示为
p
=x
a
+y
b
+z
c
,则称(x,y,z)为基底
a
b
c
下的广义坐标.特别地,当
a
b
c
为单位正交基底时,(x,y,z)为直角坐标.设
i
j
k
分别为直角坐标中x,y,z正方向上的单位向量,则空间直角坐标(1,2,3)在基底
i
+
j
i
-
j
k
下的广义坐标为______.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都市树德中学高二(上)期中数学试卷(理科)(解析版) 题型:填空题

由空间向量基本定理可知,空间任意向量可由三个不共面的向量唯一确定地表示为,则称(x,y,z)为基底下的广义坐标.特别地,当为单位正交基底时,(x,y,z)为直角坐标.设分别为直角坐标中x,y,z正方向上的单位向量,则空间直角坐标(1,2,3)在基底下的广义坐标为   

查看答案和解析>>

同步练习册答案