精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|x2-1|,g(x)=x2+ax+2,x∈R.
(Ⅰ)若函数g(x)≤0的解集为[1,2],求不等式f(x)≤g(x)的解集;
(Ⅱ)若函数h(x)=f(x)+g(x)+2在(0,2)上有两个不同的零点x1,x2,求实数a的取值范围.
考点:绝对值不等式的解法,函数的零点
专题:选作题,不等式
分析:(Ⅰ)利用函数g(x)≤0的解集为[1,2],求出a,再分类讨论求不等式f(x)≤g(x)的解集;
(Ⅱ)分类讨论,分离参数,即可求实数a的取值范围.
解答: 解:(Ⅰ)∵函数g(x)≤0的解集为[1,2],
∴-a=3,∴a=-3,
x2-1>0时,x2-1≤x2-3x+2,∴x<-1;
x2-1≤0时,-x2+1≤x2-3x+2,∴-1≤x≤
1
2
或x=1;
∴不等式f(x)≤g(x)的解集为{x|x≤
1
2
或x=1};
(Ⅱ)函数h(x)=f(x)+g(x)+2=|x2-1|+x2+ax+4=0,
x2-1>0时,-a=2x+
3
x
;x2-1≤0时,-a=
5
x

∵函数h(x)=f(x)+g(x)+2在(0,2)上有两个不同的零点x1,x2
∴由2x+
3
x
≥2
6
,可得-a≥2
6

∴a≤-2
6
点评:本题考查不等式的解法,考查函数的零点,考查学生分析解决问题的能力,难度中等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=|sin(2x+
π
3
)|,则下列关于函数f(x)的说法中正确的是(  )
A、f(x)是偶函数
B、f(x)最小正周期为π
C、f(x)图象关于点(-
π
6
,0)对称
D、f(x)在区间[
π
3
12
]上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数f(x)=2sin(
x
3
+
π
6
)的图象向左平移
π
4
个单位,再向下平移1个单位,得到函数g(x)的图象,则g(x)的解析式为(  )
A、g(x)=2sin(
x
3
+
π
4
)-1
B、g(x)=2sin(
x
3
-
π
4
)+1
C、g(x)=2sin(
x
3
-
π
12
)+1
D、g(x)=2sin(
x
3
-
π
12
)-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x为第四象限角,则
1-sinx
1+sinx
-
1+sinx
1-sinx
=(  )
A、-2tanx
B、2tanx
C、2tanx或-2tanx
D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上函数f(x)=
x+b
x2+ax+1
为奇函数.
(Ⅰ)求a+b的值;
(Ⅱ)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:(m-1)x+2my+2=0
(1)求证直线l必经过第四象限;
(2)若直线l不过第三象限,求实数m的取值范围;
(3)求直线l在两坐标轴上截距相等时的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在复平面内,O是原点,向量
OA
对应的复数是2+i.
(1)如果点A关于实轴的对称点为B,求向量
OB
对应的复数;
(2)如果(1)中点B关于虚轴的对称点为C,求点C对应的复数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)化简:sin2αsin2β+cos2αcos2β-
1
2
cos2αcos2β;
(2)已知f(x)=
(sinx-cosx)sin2x
sinx
,求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在梯形ABCD中,E、F分别是腰AD、BC的中点,M在线段EF上,且EM=2MF,下底是上底的2倍,若
AB
=
a
BC
=
b
,用
a
b
表示
AM

查看答案和解析>>

同步练习册答案