精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右焦点为,若圆Q方程,且圆心Q在椭圆上.

1)求椭圆的方程;

2)已知直线交椭圆AB两点,过直线上一动点P作与垂直的直线交圆QCD两点,M为弦CD中点,的面积是否为定值?若为定值,求出此定值;若不为定值,说明你的理由.

【答案】(1)(2)为定值,定值是

【解析】

1)由椭圆的定义求得,再根据焦点坐标得,再由得到的值,从而得到椭圆的方程;

2)设,将直线的方程代入椭圆方程,利用弦长公式求得;由题设条件得,从而有,所以的面积为定值,利用面积公式可得答案.

解:(1)由题意可知:

∴椭圆的方程为.

2)设,由

消去y,得

,

M为线段CD中点,∴

又∵,∴

又点Q的距离

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.

(Ⅰ)求椭圆的方程;

(Ⅱ)设点在椭圆上,且异于椭圆的上、下顶点,点为直线轴的交点,点轴的负半轴上.若为原点),且,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,椭圆C)左,右焦点分别为,且椭圆的长轴长为,右准线方程为.

1)求椭圆C的方程;

2)设直线l过椭圆C的右焦点,且与椭圆相交与AB(与左右顶点不重合)

i)椭圆的右顶点为M,设的斜率为的斜率为,求的值;

ii)若椭圆上存在一点D满足,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是菱形,.

1)证明:平面平面

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

时,求曲线在点处的切线方程;

时,若在区间上的最小值为,求a的取值范围;

,且恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数在区间上存在零点,求实数的取值范围;

(2)若对任意的,总存在使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为是椭圆短轴的一个顶点,并且是面积为的等腰直角三角形.

(1)求椭圆的方程;

(2)设直线与椭圆相交于两点,过作与轴垂直的直线,已知点,问直线的交点的横坐标是否为定值?若是,则求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,点在椭圆上,且的最小值是为坐标原点).

1)求椭圆的标准方程.

2)已知动直线与圆相切,且与椭圆交于两点.是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数是定义在上的奇函数,当时,,则函数上的所有零点之和为(

A.7B.8C.9D.10

查看答案和解析>>

同步练习册答案