精英家教网 > 高中数学 > 题目详情
1.椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1的焦点为F1、F2,点P为这个椭圆上的动点,当∠F1PF2为钝角时,点P横坐标的取值范围是(-$\frac{4\sqrt{6}}{3}$,$\frac{4\sqrt{6}}{3}$).

分析 设P(x,y),根据椭圆方程求得两焦点坐标,根据∠F1PF2是钝角推断出PF12+PF22<F1F22,代入P坐标求得x和y的不等式关系,求得x的范围.

解答 解:设P(x,y),则F1(-2$\sqrt{3}$,0),F2(2$\sqrt{3}$,0),
∵∠F1PF2是钝角,∴cos∠F1PF2<0,
∴PF12+PF22<F1F22
∴(x+2$\sqrt{3}$)2+y2+(x-2$\sqrt{3}$)2+y2<48,
∴x2+y2<18,
∴x2+4(1-$\frac{{x}^{2}}{16}$)<18,
∴x2<$\frac{32}{3}$,解得-$\frac{4\sqrt{6}}{3}$<x<$\frac{4\sqrt{6}}{3}$.
故答案为:(-$\frac{4\sqrt{6}}{3}$,$\frac{4\sqrt{6}}{3}$).

点评 本题主要考查了椭圆的简单性质和解不等式,∠F1PF2是钝角推断出PF12+PF22<F1F22,是解题关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知F1、F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的左、右焦点,过F1且垂直于x轴的直线与椭圆交于M,N两点,若△MNF2为等腰直角三角形,则椭圆的离心率e为$\sqrt{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=sin(4x-\frac{π}{6})+\sqrt{3}sin(4x+\frac{π}{3})$
(Ⅰ)求f(x)的单调递减区间;
(Ⅱ)将函数y=f(x)的图象向左平移$\frac{π}{48}$个单位,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求函数y=g(x)在[-π,0]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知F1,F2为椭圆C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1的左、右焦点,点E是椭圆C上的动点,$\overrightarrow{EF}$1•$\overrightarrow{EF}$2的最大值、最小值分别为(  )
A.9,7B.8,7C.9,8D.17,8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设椭圆$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}=1$的焦点为F1、F2,直线L过点F1,且与椭圆相交于A,B两点,则△ABF2的周长为(  )
A.9B.16C.20D.25

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若函数f(x)=x3-($\frac{1}{2}$)x的零点在区间(n-1,n)内,则整数n=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知O是坐标原点,椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦点分别为F1,F2,离心率$e=\frac{{\sqrt{2}}}{2}$,且过点$P(1,\frac{{\sqrt{2}}}{2})$.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若⊙O是以F1F2为直径的圆,一直线l:y=kx+m与⊙O相切,并与椭圆交于不同的两点A、B,当$\frac{2}{3}≤\overrightarrow{OA}•\overrightarrow{OB}≤\frac{3}{4}$时,求△ABC的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$f(\sqrt{x}-1)=x-2\sqrt{x}$,且f(a)=8,则实数a的值是(  )
A.±3B.16C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在等差数列{an}中,已知a1+a4+a7=9,a3+a6+a9=21,则数列{an}的前9项和S9=(  )
A.-11B.13C.45D.117

查看答案和解析>>

同步练习册答案