已知函数,,
(Ⅰ)若曲线与曲线相交,且在交点处有相同的切线,求的值及该切线的方程;
(Ⅱ)设函数,当存在最小值时,求其最小值的解析式;
(Ⅲ)对(Ⅱ)中的,证明:当时, .
(Ⅰ)a=, y-e= (x-e2)(II) (Ⅲ)利用函数的单调性证明
【解析】
试题分析:(Ⅰ)=,=(x>0),
由已知得 解得a=,x=e2,
∴两条曲线交点的坐标为(e2,e) 切线的斜率为k=f’(e2)=
∴切线的方程为 y-e= (x-e2)
(II)由条件知h(x)=–aln x(x>0),
(i)当a>0时,令解得,
∴当0 << 时,,在(0,)上递减;
当x>时,,在上递增.
∴是在上的唯一极值点,且是极小值点,从而也是的最小值点.
∴最小值
(ii)当时,在(0,+∞)上递增,无最小值。
故的最小值的解析式为
(Ⅲ)由(Ⅱ)知
则,令解得.
当时,,∴在上递增;
当时,,∴在上递减.
∴在处取得最大值
∵在上有且只有一个极值点,所以也是的最大值.
∴当时,总有
考点:本题考查了导数的运用
点评:导数本身是个解决问题的工具,是高考必考内容之一,高考往往结合函数甚至是实际问题考查导数的应用,求单调、最值、完成证明等,请注意归纳常规方法和常见注意点
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
3 |
π |
24 |
5π |
24 |
π |
24 |
查看答案和解析>>
科目:高中数学 来源: 题型:
11π |
6 |
| ||
2 |
3 |
π |
查看答案和解析>>
科目:高中数学 来源: 题型:
xn+2 | xn-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
π |
2 |
A、f(x)=2sin(
| ||||
B、f(x)=2sin(
| ||||
C、f(x)=2sin(2x-
| ||||
D、f(x)=2sin(2x+
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com