精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|x﹣1|+|x+3|.
(1)解不等式f(x)≥8;
(2)若不等式f(x)<a2﹣3a的解集不是空集,求实数a的取值范围.

【答案】
(1)解:f(x)=|x﹣1|+|x+3|=

当x<﹣3时,由﹣2x﹣2≥8,解得x≤﹣5;

当﹣3≤x≤1时,f(x)≤8不成立;

当x>1时,由2x+2≥8,解得x≥3.

所以不等式f(x)≥8的解集为{x|x≤﹣5或x≥3}


(2)解:因为f(x)=|x﹣1|+|x+3|≥4,

又不等式f(x)<a2﹣3a的解集不是空集,

所以,a2﹣3a>4,所以a>4或a<﹣1,

即实数a的取值范围是(﹣∞,﹣1)∪(4,+∞)


【解析】(1)求出函数f(x)的分段函数的形式,通过解各个区间上的x的范围去并集即可;(2)求出f(x)的最小值,得到关于a的不等式,解出即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xoy中,直线l的参数方程为 (t 为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=asinθ.
(Ⅰ)若a=2,求圆C的直角坐标方程与直线l的普通方程;
(Ⅱ)设直线l截圆C的弦长等于圆C的半径长的 倍,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,且a>b,a>c.△ABC的外接圆半径为1, ,若边BC上一点D满足BD=2DC,且∠BAD=90°,则△ABC的面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中,椭圆C的参数方程为 (θ为参数).
(I)以原点为极点,x轴的正半轴为极轴建立极坐标系,求椭圆C的极坐标方程;
(Ⅱ)设M(x,y)为椭圆C上任意一点,求x+2y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如表所示:

积极参加班级工作

不太主动参加班级工作

合计

学习积极性高

18

7

25

学习积极性一般

6

19

25

合计

24

26

50

(Ⅰ)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?
(Ⅱ)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关?并说明理由.
参考公式与临界值表:K2=

p(K2≥k0

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别是∠A,∠B,∠C的对边.若(a+b﹣c)(a+b+c)=ab,c= ,当ab取得最大值时,SABC=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|2x+3|﹣|2x﹣a|,a∈R.
(1)若不等式f(x)≤﹣5的解集非空,求实数a的取值范围;
(2)若函数y=f(x)的图象关于点(﹣ ,0)对称,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为某工厂工人生产能力频率分布直方图,则估计此工厂工人生产能力的平均值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个不相等的非零向量 ,两组向量均由 均由2个 和2个 排列而成,记S= + + + ,Smin表示S所有可能取值中的最小值,则下列命题中正确的个数为( )
①S有3个不同的值;
②若 ,则Smin与| |无关;
③若 ,则Smin与| |无关;
④若| |=2| ,Smin=4 ,则 的夹角为
A.0
B.1
C.2
D.3

查看答案和解析>>

同步练习册答案