精英家教网 > 高中数学 > 题目详情
给出函数f(x)=则f(log23)等于( )
A.-
B.
C.
D.
【答案】分析:先根据对数函数的性质判断log23的范围,代入相应的解析式求解,再判断所得函数值的范围,再代入对应解析式求解,利用对数的恒等式“=N”进行求解.
解答:解:∵log23<4,
∴f(log23)=f(log23+3),
∵log23+3>4,
∴f(log23+3)===
故选D.
点评:本题是对数的运算和分段函数求值问题,一定要注意自变量的值所在的范围,然后代入相应的解析式求解,利用“=N”进行求值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设y=f(x)在[0,+∞)上有定义,对于给定的实数K,定义函数fK(x)=
f(x),f(x)≤K
K,f(x)>K
,给出函数f(x)=2-x-x2,若对于任意x∈[0,+∞),恒有fK(x)=f(x),则(  )
A、K的最大值为
9
4
B、K的最小值为
9
4
C、K的最大值为2
D、K的最小值为2

查看答案和解析>>

科目:高中数学 来源: 题型:

给出函数f(x)的一条性质:“存在常数M,使得|f(x)|≤M|x|对于定义域中的一切实数x均成立.”则下列函数中具有这条性质的函数是(  )
A、y=
1
x
B、y=x2
C、y=x+1
D、y=xsinx

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x2-x4
|x-2|-2
.给出函数f(x)下列性质:(1)函数的定义域和值域均为[-1,1];(2)函数的图象关于原点成中心对称;(3)函数在定义域上单调递增;(4)Af(x)dx=0(其中A为函数的定义域);(5)A、B为函数f(x)图象上任意不同两点,则
2
<|AB|≤2
.请写出所有关于函数f(x)性质正确描述的序号
(2)(4)
(2)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•揭阳二模)如图(1)示,定义在D上的函数f(x),如果满足:对?x∈D,?常数A,都有f(x)≥A成立,则称函数f(x)在D上有下界,其中A称为函数的下界.(提示:图(1)、(2)中的常数A、B可以是正数,也可以是负数或零)  

(Ⅰ)试判断函数f(x)=x3+
48
x
在(0,+∞)上是否有下界?并说明理由;
(Ⅱ)又如具有如图(2)特征的函数称为在D上有上界.请你类比函数有下界的定义,给出函数f(x)在D上有上界的定义,并判断(Ⅰ)中的函数在(-∞,0)上是否有上界?并说明理由;
(Ⅲ)若函数f(x)在D上既有上界又有下界,则称函数f(x)在D上有界,函数f(x)叫做有界函数.试探究函数f(x)=ax3+
b
x
(a>0,b>0a,b是常数)是否是[m,n](m>0,n>0,m、n是常数)上的有界函数?

查看答案和解析>>

科目:高中数学 来源: 题型:

.函数f(x)=
x2-x4
|x-2|-2
.给出函数f(x)下列性质:(1)f(x)的定义域和值域均为[-1,1];(2)f(x)是奇函数;(3)函数在定义域上单调递增;(4)函数f(x)有两零点;(5)A、B为函数f(x)图象上任意不同两点,则
2
<|AB|≤2
.则函数f(x)有关性质中正确描述的个数是(  )

查看答案和解析>>

同步练习册答案