【题目】当曲线与直线有两个相异的交点时,实数的取值范围是__________.
【答案】
【解析】分析:将曲线方程化简,可得曲线表示以为圆心、半径的圆的上半圆,再将直线方程化为点斜式,可得直线经过定点且斜率为k,作出示意图,设直线与半圆的切线为AD,半圆的左端点为,当直线的斜率k大于AD的斜率且小于或等于AB的斜率时,直线与半圆有两个相异的交点,由此利用直线的斜率公式与点到直线的距离公式加以计算,可得实数k的取值范围.
详解:化简曲线,得,
曲线表示以为圆心、半径的圆的上半圆,
直线可化为,
直线经过定点且斜率为k,
又半圆与直线有两个相异的交点,
设直线与半圆的切线为AD,半圆的左端点为,
当直线的斜率k大于AD的斜率且小于或等于AB的斜率时,
直线与半圆有两个相异的交点,
由点到直线的距离公式,当直线与半圆相切时满足,
解得,即,
又直线AB的斜率,
直线的斜率k的范围为.
故答案为:.
科目:高中数学 来源: 题型:
【题目】如图,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于点A,B,交其准线l于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为( )
A. y2=9x B. y2=6x C. y2=3x D. y2=x
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在参加某次社会实践的学生中随机选取名学生的成绩作为样本,这名学生的成绩全部在分至分之间,现将成绩按如下方式分成组:第一组,成绩大于等于分且小于分;第二组,成绩大于等于分且小于分;第六组,成绩大于等于分且小于等于分,据此绘制了如图所示的频率分布直方图.在选取的名学生中.
(Ⅰ)求的值及成绩在区间内的学生人数.
(Ⅱ)从成绩小于分的学生中随机选名学生,求最多有名学生成绩在区间内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某公司生产某款手机的年固定成本为40万元,每生产1万只还需另投入16万元.设该公司一年内共生产该款手机万只并全部销售完,每万只的销售收入为万元,且
(1)写出年利润(万元)关于年产量(万只)的函数解析式;
(2)当年产量为多少万只时,该公司在该款手机的生产中所获得的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.
(1)当a=3时,求A∩B;
(2)若a>0,且A∩B=,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义域为的函数,如果同时满足以下三条:①对任意的,总有;②;③若,都有成立,则称函数为理想函数.
(1) 若函数为理想函数,求的值;
(2)判断函数是否为理想函数,并予以证明;
(3) 若函数为理想函数,假定,使得,且,求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com