精英家教网 > 高中数学 > 题目详情

【题目】给定下列四个命题:

若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;

若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;

垂直于同一直线的两条直线相互平行;

若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.

其中,为真命题的是  

A. B. C. D.

【答案】D

【解析】

从直线与平面平行与垂直,平面与平面平行与垂直的判定与性质,考虑选项中的情况,找出其它可能情形加以判断,推出正确结果.

当两个平面相交时,一个平面内的两条直线可以平行于另一个平面,故不对;由平面与平面垂直的判定可知正确;空间中垂直于同一条直线的两条直线可以相交也可以异面,故不对;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故正确

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的右焦点为,不垂直轴且不过点的直线与椭圆相交于两点.

1)若直线经过点,则直线的斜率之和是否为定值?若是,求出该定值;若不是,请说明理由;

2)如果,原点到直线的距离为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在长为10千米的河流的一侧有一条观光带,观光带的前一部分为曲线段,设曲线段为函数(单位:千米)的图象,且图象的最高点为;观光带的后一部分为线段

(1)求函数为曲线段的函数的解析式;

(2)若计划在河流和观光带之间新建一个如图所示的矩形绿化带,绿化带仅由线段构成,其中点在线段上.当长为多少时,绿化带的总长度最长?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设F1 , F2分别是C: (a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.

(1)若直线MN的斜率为 ,求C的离心率;
(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设某种设备使用的年限x(年)与所支出的维修费用y(万元)有以下统计资料:

使用年限x

2

3

4

5

6

维修费用y

2

4

5

6

7

若由资料知y对x呈线性相关关系。试求:

(1)求; (2)线性回归方程

(3)估计使用10年时,维修费用是多少?

附:利用“最小二乘法”计算a,b的值时,可根据以下公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1 +y2=1(m>1)与双曲线C2 ﹣y2=1(n>0)的焦点重合,e1 , e2分别为C1 , C2的离心率,则(  )
A.m>n且e1e2>1
B.m>n且e1e2<1
C.m<n且e1e2>1
D.m<n且e1e2<1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=lg的图象关于原点对称,其中a为常数.

(Ⅰ)求a的值,并求出fx)的定义域

(Ⅱ)关于x的方程f(2x)+21g(2x-1)=ax∈[]有实数解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二项式 的展开式.

(1)求展开式中含项的系数;

(2)如果第项和第项的二项式系数相等,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A是椭圆E: =1的左顶点,斜率为k(k>0)的直线交E与A,M两点,点N在E上,MA⊥NA.
(1)当|AM|=|AN|时,求△AMN的面积
(2)当2|AM|=|AN|时,证明: <k<2.

查看答案和解析>>

同步练习册答案