精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系中,单位圆上存在两点,满足均与轴垂直,设的面积之和记为

,求的值;

若对任意的,存在,使得成立,且实数使得数列为递增数列,其中求实数的取值范围.

【答案】(1)(2)

【解析】

(1)运用三角形的面积公式和三角函数的和差公式,以及特殊角的函数值,可得所求角;

(2)由正弦函数的值域可得的最大值,再由基本不等式可得的最大值,可得的范围,再由数列的单调性,讨论的范围,即可得到的取值范围.

依题意,可得

,得

,所以

因为,所以,所以

时,

(当且仅当时,等号成立)

又因为对任意,存在,使得成立,

所以,即,解得

因为数列为递增数列,且

所以,从而

,所以

从而

①当时,,从而

此时同号,

,即

②当时,由于趋向于正无穷大时,趋向于相等,从而趋向于相等,即存在正整数,使,从而

此时异号,与数列为递增数列矛盾,

综上,实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是正方形,平面,分别是线段的中点,.

(1)证明:平面

(2)设点是线段的中点,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)当时,成立,求的取值范围;

(Ⅲ)设曲线,点为该曲线上不同的两点.求证:当时,直线的斜率大于-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)求函数的最小正周期和对称轴方程;

(2)若,求的值域.

【答案】(1)对称轴为,最小正周期;(2)

【解析】

(1)利用正余弦的二倍角公式和辅助角公式将函数解析式进行化简得到,由周期公式和对称轴公式可得答案;(2)由x的范围得到,由正弦函数的性质即可得到值域.

(1)

,则

的对称轴为,最小正周期

(2)当时,

因为单调递增,在单调递减,

取最大值,在取最小值,

所以

所以

【点睛】

本题考查正弦函数图像的性质,考查周期性,对称性,函数值域的求法,考查二倍角公式以及辅助角公式的应用,属于基础题.

型】解答
束】
21

【题目】已知等比数列的前项和为,公比

(1)求等比数列的通项公式;

(2)设,求的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某村电费收取有以下两种方案供农户选择:

方案一:每户每月收取管理费2元,月用电量不超过30度时,每度0.5元;超过30度时,超过部分按每度0.6元收取;

方案二:不收管理费,每度0.58元.

1)求方案一收费(元)与用电量(度)间的函数关系;

2)老王家九月份按方案一交费35元,问老王家该月用电多少度?

3)老王家该月用电量在什么范围内,选择方案一比选择方案二更好?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)对任意xyR,总有f(x)f(y)f(xy),且当x>0时,f(x)<0f(1)=-.

(1)求证:f(x)R上的单调减函数.

(2)f(x)[3,3]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(2x+ )+sin(2x﹣ )+2cos2x﹣1,x∈R.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[ ]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若在区间[23]上有最大值1.

1)求的值;

2)求函数在区间上的值域;

3)若在[2,4]上单调,求实数的取值范围.

查看答案和解析>>

同步练习册答案