精英家教网 > 高中数学 > 题目详情
7.已知集合A={0,1},B={-1,0,a2+a-1},且A⊆B,则a等于(  )
A.1B.-2或1C.-2D.-2或-1

分析 根据A⊆B,说明1∈B,解得即可.

解答 解:∵集合A={0,1},B={-1,0,a2+a-1},且A⊆B,
∴a2+a-1=1,
解得a=-2或a=1,
故选B.

点评 本题主要考查集合的子集,属于容易题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.函数f(x)=x+sinx的图象在点O(0,0)处的切线方程是y=2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦点为F1、F2,过F2作垂直于x轴的直线交椭圆于P点(点P在x轴上方),连结PF1并延长交椭圆于另一点Q.设$\overrightarrow{P{F_1}}=λ\overrightarrow{{F_1}Q}$(2≤λ≤$\frac{7}{3}$).
(1)若PF1=$\frac{6}{5}\sqrt{5}$,PF2=$\frac{4}{5}\sqrt{5}$,求椭圆的方程;
(2)求椭圆的离心率的范围;
(3)当离心率最大时,过点P作直线l交椭圆于点R,设直线PQ的斜率为k1,直线RF1的斜率为k2,若k1=$\frac{3}{2}{k_2}$,求直线l的斜率k.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.阅读算法流程图,运行相应的程序,输出的结果为$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在数列{an}中,a1=1,an-1=(1-$\frac{1}{n}$)an-$\frac{n-1}{2}$.
(1)若bn=$\frac{{a}_{n}}{n}$,求数列{bn}的通项公式;
(2)求数列{$\frac{1}{{a}_{n}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知抛物线的顶点在坐标原点,焦点是圆(x-3)2+y2=4的圆心,则抛物线的方程是(  )
A.x2=12yB.x2=6yC.y2=12xD.y2=6x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若在定义域内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)是“可拆函数”.
(1)函数f(x)=$\frac{k}{x}$是否是“可拆函数”?请说明理由;
(2)若函数f(x)=2x+b+2x是“可拆函数”,求实数b的取值范围:
(3)证明:f(x)=cosx是“可拆函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点分别为F1,F2,Q为右支上一点,P点在直线x=-a上,且满足$\overrightarrow{PQ}$=$\overrightarrow{Q{F}_{2}}$,$\overrightarrow{OQ}$=λ($\frac{\overrightarrow{O{F}_{2}}}{|\overrightarrow{O{F}_{2}}|}$+$\frac{\overrightarrow{OP}}{|\overrightarrow{OP}|}$)(λ≠0),则该双曲线的离心率为(  )
A.$\sqrt{5}$+1B.$\sqrt{2}$+1C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.logcotθ$\frac{sinθ+sin2θ}{1+cosθ+cos2θ}$=-1.

查看答案和解析>>

同步练习册答案