精英家教网 > 高中数学 > 题目详情

如图所示,AB为⊙O的直径,AE平分∠BAC交⊙O于E点,过E作⊙O的切线交AC于点D,试判断△AED的形状,并说明理由.

见解析

解析解 △AED为直角三角形,理由如下:
连接OE,∵ED为⊙O切线,

∴OE⊥ED.
∵OA=OE,
∴∠1=∠OEA.
又∵∠1=∠2,
∴∠2=∠OEA,
∴OE∥AC,∴AC⊥DE,
∴△AED为直角三角形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图:是⊙的直径,是弧的中点,,垂足为于点.

(1)求证:=;
(2)若=4,⊙的半径为6,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点EDB垂直BE交圆于点D.
 
(1)证明:DBDC
(2)设圆的半径为1,BC,延长CEAB于点F,求△BCF外接圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB是⊙O的直径,BC是⊙O的切线,B为切点,OC平行于弦AD,连结CD.
 
(1)求证:CD是⊙O的切线;
(2)过点DDEAB于点E,交AC于点P,求证:P点平分线段DE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知C点在圆O直径BE的延长线上,CA切圆O于A点,DC是∠ACB的平分线交AE于点F,交AB于D点.

(1)求∠ADF的度数;
(2)AB=AC,求AC∶BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(拓展深化)如图所示,△ABC内接于⊙O,AB=AC,直线XY切⊙O于点C,BD∥XY,AC、BD相交于E.

(1)求证:△ABE≌△ACD;
(2)若AB=6 cm,BC=4 cm,求AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,AD、CE是△ABC中边BC、AB的高,AD和CE相交于点F.

求证:AF·FD=CF·FE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是⊙的直径, 是⊙的切线,的延长线交于点为切点.若的平分线和⊙分别交于点,求的值.
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

切线与圆切于点,圆内有一点满足,的平分线交圆于,,延长交圆于,延长交圆于,连接.

(Ⅰ)证明://;
(Ⅱ)求证:.

查看答案和解析>>

同步练习册答案