精英家教网 > 高中数学 > 题目详情
已知函数f(x)=1-
42ax+a
(a>0且a≠1)是定义在(-∞,+∞)上的奇函数.
(1)求a的值;  
(2)当x∈(0,1]时,t•f(x)≥2x-2恒成立,求实数t的取值范围.
分析:(1)根据奇函数的性质,令f(0)=0列出方程,求出a的值;
(2)由0<x≤1判断出f(x)>0,再把t分离出来转化为t≥
(2x-2)(2x+1)
2x-1
对x∈(0,1]时恒成立,利用换元法:令m=2x-1,代入上式并求出m的范围,再转化为求y=m-
1
m
+1
在(0,1]上的最大值.
解答:解:(1)∵函数f(x)=1-
4
2ax+a
(a>0且a≠1)是定义在(-∞,+∞)上的奇函数,
f(0)=1-
4
2+a
=0
,解得a=2.
(2)由(1)得f(x)=
2x-1
2x+1
,当0<x≤1时,f(x)>0.
∴当0<x≤1时,t•f(x)≥2x-2恒成立,
则等价于t≥
2x-2
f(x)
=
(2x-2)(2x+1)
2x-1
对x∈(0,1]时恒成立,
令m=2x-1,0<m≤1,即t≥m-
1
m
+1
当0<m≤1时恒成立,
t≥y=m-
1
m
+1
在(0,1]上的最大值,易知y=m-
1
m
+1
在(0,1]上单调递增,
∴当m=1时y=m-
1
m
+1
有最大值1,所以t≥1,
故所求的t范围是:t≥1.
点评:本题考查了奇函数的性质应用,恒成立问题以及转化思想和分离常数法求参数范围,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案