精英家教网 > 高中数学 > 题目详情
在四棱锥S-ABCD中,已知AB∥CD,SA=SB,SC=SD,E,F分别为AB,CD的中点.
(1)求证:平面SEF⊥平面ABCD;
(2)若平面SAB∩平面SCD=l,试问l与平面ABCD是否平行,并说明理由.
考点:平面与平面垂直的判定,直线与平面平行的判定
专题:综合题,空间位置关系与距离
分析:(1)欲证平面SEF⊥平面ABCD,根据面面垂直的判定定理可知在平面ABCD内一直线与平面SEF垂直,而根据线面垂直的性质定理可知AB⊥平面SEF;
(2)根据线面平行的判定定理可知AB∥平面SCD,而平面SAB∩平面SCD=l,再根据直线与平面平行的性质定理得AB∥l,即可证明l∥平面ABCD.
解答: (1)证明:由SA=SB,E为AB中点得SE⊥AB.由SC=SD,F为CD中点得SF⊥DC.又AB∥DC,∴AB⊥SF.
又SF∩SE=S,∴AB⊥平面SEF.
又∵AB?平面ABCD,
∴平面SEF⊥平面ABCD.
(2)解:∵AB∥CD,CD?面SCD,
∴AB∥平面SCD.
又∵平面SAB∩平面SCD=l,
根据直线与平面平行的性质定理得AB∥l.
∵l?平面ABCD,AB?平面ABCD,
∴l∥平面ABCD.
点评:本小题主要考查平面与平面垂直的判定,以及线面平行的判定定理和性质定理等有关知识,考查空间想象能力、运算能力和推理论证能力,考查转化思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设an是(x+3)n的展开式中x的一次项的系数,则(
32
a2
+
33
a3
+…+
32008
a2008
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某市地铁即将于2013年12月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们月收入与态度如下:
月收入(单位百元)[15,25][25,35][35,45][45.55][55.65][65.75]
赞成的那个定价者人数123534
认为价格偏高人数4812521
(1)若以区间的中点为该区间捏的人均月收入,求参与调查的人员中“赞成定价者”与“认为价格偏高者”的月平均收入的差距是多少(结果保留2位小数);
(2)由以上统计数据填下面2乘2列联表并分析是否有99%把握认为“月收入以5500为分界点对地铁定价的态度有差异”.
月收入不低于55百元的人数月收入低于55百元的人数合计
认为价格偏高者a=c=
赞成定价者b=d=
合计
参考数据:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
P(x2≥k)0.050,01
k3.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)满足f(x)•f(x+2)=13,若f(1)=2,则f(99)=(  )
A、13
B、2
C、
2
13
D、
13
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|
1
2
<2x<4},B={x|x2≤1},则A∪B=(  )
A、{x|x<2}
B、{x|-
1
2
<x≤1}
C、{x|-1≤x<2}
D、{x|1≤x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2x-2sin2x
(1)求函数f(x)的最小正周期.
(2)求函数单调递增区间.
(3)求函数f(x)的最大值及f(x)取最大值时x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:若数列{An}满足An+1=An2,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=2x2+2x的图象上,其中n为正整数.
(1)证明:数列{2an+1}是“平方递推数列”,且数列{lg(2an+1)}为等比数列;
(2)设(1)中“平方递推数列”的前n项之积为Tn,即Tn=(2a1+1)(2a2+1)•…•(2an+1),求数列{an}的通项及Tn的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}满足a1=2且an+an-1=2n+2n-1,Sn为数列{an}前n项和,则log2(S2012+2)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
lnx
x

(1)确定y=f(x)在(0,+∞)上的单调性;
(2)若a>0,函数h(x)=xf(x)-x-ax2在(0,2)上有极值,求实数a的取值范围.

查看答案和解析>>

同步练习册答案