精英家教网 > 高中数学 > 题目详情
设函数f(x)是定义在R上的偶函数,且对于任意的x∈R恒有f(x+1)=-f(x),已知当x∈[0,1]时,f(x)=3x.则
①2是f(x)的周期;
②函数f(x)在(2,3)上是增函数;
③函数f(x)的最大值为1,最小值为0;
④直线x=2是函数f(x)图象的一条对称轴.
其中所有正确命题的序号是
①②④
①②④
分析:①对于任意的x∈R恒有f(x+1)=-f(x),所以f(x+2)=f(x),即2是函数的周期;
②利用x∈[0,1]时,函数单调递增,结合周期性,可得结论;
③x∈[0,1]时,函数f(x)的最大值为3,最小值为1,结合①②可得结论;
④函数f(x)是定义在R上的偶函数,2是函数的周期,可得结论.
解答:解:∵对于任意的x∈R恒有f(x+1)=-f(x),∴f(x+2)=f(x),∴2是函数的周期,即①正确;
设x∈(2,3),则x-2∈(0,1),∵当x∈[0,1]时,f(x)=3x,函数单调递增,2是函数的周期,∴函数f(x)在(2,3)上是增函数,即②正确;
x∈[0,1]时,f(x)=3x,∴x∈[0,1]时,函数f(x)的最大值为3,最小值为1,结合①②可知,③不正确;
∵函数f(x)是定义在R上的偶函数,2是函数的周期,∴直线x=2是函数f(x)图象的一条对称轴,即④正确.
故答案为①②④.
点评:本题考查函数的性质,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)是定义在(-∞,+∞)上的增函数,如果不等式f(1-ax-x2)<f(2-a)对于任意x∈[0,1]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(y),f(
1
3
)=1

(1)求f(
1
9
)

(2)若f(x)+f(2-x)<2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在[-1,0)∪(0,1]上的偶函数,当x∈[-1,0)时,f(x)=x3-ax(a∈R).
(1)当x∈(0,1]时,求f(x)的解析式;
(2)若a>3,试判断f(x)在(0,1]上的单调性,并证明你的结论;
(3)是否存在a,使得当x∈(0,1]时,f(x)有最大值1?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在[a,b]上的奇函数,则f(a+b)=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数.若当x≥0时,f(x)=
|1-
1
x
0
x>0;,
x=0.

(1)求f(x)在(-∞,0)上的解析式.
(2)请你作出函数f(x)的大致图象.
(3)当0<a<b时,若f(a)=f(b),求ab的取值范围.
(4)若关于x的方程f2(x)+bf(x)+c=0有7个不同实数解,求b,c满足的条件.

查看答案和解析>>

同步练习册答案