精英家教网 > 高中数学 > 题目详情
8.无锡市政府决定规划地铁三号线:该线起於惠山区惠山城铁站,止於无锡新区硕放空港产业园内的无锡机场站,全长28公里,目前惠山城铁站和无锡机场站两个站点已经建好,余下的工程是在已经建好的站点之间铺设轨道和等距离修建停靠站.经有关部门预算,修建一个停靠站的费用为6400万元,铺设距离为x公里的相邻两个停靠站之间的轨道费用为400x3+20x万元.设余下工程的总费用为f(x)万元.(停靠站位于轨道两侧,不影响轨道总长度)
(1)试将f(x)表示成x的函数;
(2)需要建多少个停靠站才能使工程费用最小,并求最小值.

分析 (1)先设需要修建k个停靠站,列出余下工程的总费用的函数表达式,再结合自变量x的实际意义:x表示相邻两停靠站之间的距离,确定出函数的定义域即可.
(2)依据(1)中得出的函数表达式,结合基本不等式即可求得函数y的最大值,最后回到原实际问题进行解答即可.

解答 解:(1)设需要修建k个停靠站,则k个停靠站将28公里的轨道分成相等的k+1段
∴$(k+1)x=28⇒k=\frac{28}{x}-1$…(3分)
∴$f(x)=6400k+(k+1)(400{x^3}+20x)=6400(\frac{28}{x}-1)+\frac{28}{x}(400{x^3}+20x)$
化简得$f(x)=28×400{x^2}+\frac{28×6400}{x}-5840$…(7分)
(2)$f(x)≥28×400{x^2}+\frac{28×3200}{x}+\frac{28×3200}{x}-63722$$≥3\root{3}{{28×400{x^2}•\frac{28×3200}{x}•\frac{28×3200}{x}}}-6372=128028$(万元)…(11分)
当且仅当$28×400{x^2}=\frac{28×3200}{x}$即x=2,$k=\frac{28}{x}-1=13$取“=”…(13分)
答:需要建13个停靠站才能使工程费用最小,最小值费用为128028万元…(14分)

点评 本题考查解函数在生产实际中的应用,考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知圆心C的坐标为(2,-2),圆C与x轴和y轴都相切
(1)求圆C的方程
(2)求与圆C相切,且在x轴和y轴上的截距相等的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.圆的半径为6cm,则圆心角为30°的扇形面积为3π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知f(x)=$\left\{\begin{array}{l}{{x}^{2},x∈[0,+∞)}\\{{x}^{3}+{a}^{2}-3a+2,x∈(-∞,0)}\end{array}\right.$在R上是增函数,求实数α的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$|{\overrightarrow a}|=1$,$|{\overrightarrow b}|=\sqrt{2}$,$|{\overrightarrow c}|=\sqrt{3}$,且$\overrightarrow a+\overrightarrow b+\overrightarrow c=\overrightarrow 0$,则$\overrightarrow a•\overrightarrow b+\overrightarrow b•\overrightarrow c+\overrightarrow c•\overrightarrow a$=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)的定义域为R,且x3f(x)+x3f(-x)=0,若对任意x∈[0,+∞)都有3xf(x)+x2f'(x)<2,则不等式x3f(x)-8f(2)<x2-4的解集为(  )
A.(-2,2)B.(-∞,-2)∪(2,+∞)C.(-4,4)D.(-∞,-4)∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xoy中,已知向量$\overrightarrow{m}$=(-$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$),$\overrightarrow{n}$=(cosx,sinx),0≤x≤π,且f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)若$\overrightarrow{m}$⊥$\overrightarrow{n}$,求tanx的值;
(2)若$\overrightarrow{m}$与$\overrightarrow{n}$的夹角为$\frac{π}{3}$,求x的值;
(3)求f(x)的单调区间和最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.曲线$\left\{{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}}\right.$(α为参数)上的点到曲线ρcosθ-ρsinθ+1=0的最大距离为$\sqrt{2}+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,PA垂直于矩形ABCD所在的平面,则图中与平面PCD垂直的平面是(  )
A.平面ABCDB.平面PBCC.平面PADD.平面PBC

查看答案和解析>>

同步练习册答案