精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,已知是等边三角形,平面,点为棱的中点.

(1)求证:平面

(2)求三棱锥的体积.

【答案】(1)证明见解析;(2) .

【解析】

(1)取BC的中点Q,连MQ与DQ,可证得四边形为平行四边形,故,根据线面平行的判定定理可得结论成立.(2)取AB的中点N,连接AN,根据条件可得到平面,且四边形为直角梯形,即确定了三棱锥的高和底面,然后利用可得所求体积.

(1)证明:取PC的中点Q,连接MQ与DQ,

的中位线,

,且

,且

∴四边形为平行四边形,

平面平面

平面

(2)取AB的中点N,连接AN,

为等边三角形,

平面平面

∴平面平面

又平面平面

平面

∴四边形为直角梯形,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某中学利用周末组织教职员工进行了一次秋季登山健身的活动,有Ⅳ人参加,现将所有参加者按年龄情况分为等七组,其频率分布直方图如图所示,已知这组的参加者是6人.

1)已知这两组各有2名数学教师,现从这两个组中各选取2人担任接待工作,设两组的选择互不影响,求两组选出的人中恰有1名数学老师的概率;

2)组织者从这组的参加者(其中共有4名女教师,其余全为男教师)中随机选取3名担任后勤保障工作,其中女教师的人数为,求的分布列和均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中国诗词大会》(第三季)亮点颇多,在“人生自有诗意”的主题下,十场比赛每场都有一首特别设计的开场诗词在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《沁园春·长沙》、《蜀道难》、《敕勒歌》、《游子吟》、《关山月》、《清平乐·六盘山》排在后六场,且《蜀道难》排在《游子吟》的前面,《沁园春·长沙》与《清平乐·六盘山》不相邻且均不排在最后,则后六场的排法有__________种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高一年级某个班分成7个小组,利用假期参加社会公益服务活动每个小组必须全员参加,参加活动的次数记录如下:

组别

参加活动次数

3

2

4

3

3

4

2

求该班的7个小组参加社会公益服务活动数的中位数及与平均数v

从这7个小组中随机选出2个小组在全校进行活动汇报,求“选出的2个小组参加社会公益服务活动次数相等”的概率.

小组每组有4名同学,小组有5名同学,记“该班学参加社会公益服务活动的平均次数”为,写出v的大小关系结论不要求证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,平面ABCD,为等边三角形,,M为AC的中点.

证明:平面PCD;

若PD与平面PAC所成角的正切值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,求函数的极值;

(2)若不等式对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的左焦点为,且点C上.

C的方程;

设点P关于x轴的对称点为点不经过P点且斜率为的直线1C交于AB两点,直线PAPB分别与x轴交于点MN,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4 坐标系与参数方程选讲

在直角坐标系中,直线的参数方程为参数),以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线极坐标方程为.

(1)求直线的普通方程以及曲线的参数方程;

(2)当时,为曲线上动点,求点到直线距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:

优秀

非优秀

总计

甲班

10

乙班

30

总计

已知在全部105人中随机抽取1人,成绩优秀的概率为,则下列说法正确的是(  )

A. 列联表中的值为30,的值为35

B. 列联表中的值为15,的值为50

C. 根据列联表中的数据,若按的可靠性要求,能认为“成绩与班级有关系”

D. 根据列联表中的数据,若按的可靠性要求,不能认为“成绩与班级有关系”

查看答案和解析>>

同步练习册答案