精英家教网 > 高中数学 > 题目详情
已知tanα=
1
7
,tanβ=
1
3
,并且α,β均为锐角,求α+2β的值.
分析:根据tanα和tanβ的值都小于1且α,β均为锐角,得到α和β度数都为大于0小于
π
4
,进而求出α+2β的范围,然后利用二倍角的正切函数公式由tanβ的值求出tan2β的值,利用两角和的正切函数公式表示出tan(α+2β),将各自的值代入即可求出值,根据求出的α+2β的范围,利用特殊角的三角函数值即可求出α+2β的值.
解答:解:∵tanα=
1
7
<1,tanβ=
1
3
<1,
且α、β均为锐角,
∴0<α<
π
4
,0<β<
π
4

∴0<α+2β<
4

又tan2β=
2tanβ
1-tan2β
=
3
4

∴tan(α+2β)=
tanα+tan2β
1-tanα•tan2β
=
1
7
+
3
4
1-
1
7
×
3
4
=1
∴α+2β=
π
4
点评:此题考查学生灵活运用二倍角的正切函数公式及两角和的正切函数公式化简求值,是一道基础题.求出α+2β的范围是本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tanα=
1
7
,sinβ=
10
10
,α、β为锐角,求证:α+2β=
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=
1
7
tanβ=
1
3
,α,β均为锐角
(Ⅰ)求tan(α+β)的值;
(Ⅱ)求α+2β的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求函数f(x)=2sin(π-x)sin(
π
2
-x)+2
3
sin2x-
3
的单调递减区间;
(2)已知tanα=
1
7
,tanβ=
1
3
,并且α,β∈(0,
π
2
),求α+2β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=
1
7
,tanβ=
1
3
,且α,β∈(0,
π
4
)
,则α+2β=
 

查看答案和解析>>

同步练习册答案