【题目】某移动支付公司随机抽取了100名移动支付用户进行调查,得到如下数据:
每周移动支付次数 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合计 | 10 | 8 | 7 | 11 | 14 | 50 |
(1)在每周使用移动支付超过3次的样本中,按性别用分层抽样随机抽取5名用户.
①求抽取的5名用户中男、女用户各多少人;
②从这5名用户中随机抽取2名用户,求抽取的2名用户均为男用户的概率.
(2)如果认为每周使用移动支付次数超过3次的用户“喜欢使用移动支付”,能否在犯错误概率不超过0.05的前提下,认为“喜欢使用移动支付”与性别有关?
附表及公式:
0.50 | 0.25 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
0.455 | 1.323 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
【答案】(Ⅰ)①男用户有3人,女用户有2人.②.(Ⅱ)见解析.
【解析】试题分析:(1)①由表格可知,样本中每周使用移动支付次数超过3次的男用户有45人,女用户30人, 按性别用分层抽样即可得到抽取的5名用户中男、女用户的人数;
②记抽取的3名男用户分别A,B,C;女用户分别记为d,e.根据古典概型的计算公式可得抽取的2名用户均为男用户的概率
(2)由图中表格可得列联表列联表中的数据代入公式计算得出结果,作出判断即可.
试题解析:
(1)①由表格可知,样本中每周使用移动支付次数超过3次的男用户有45人,女用户30人,
在这75人中,按性别用分层抽样的方法随机抽取5名用户,其中男用户有3人,女用户有2人.
②记抽取的3名男用户分别A,B,C;女用户分别记为d,e.
再从这5名用户随机抽取2名用户,共包含(A,B),(A,C),(A,d),(A,e),(B,C),(B,d),(B,e),
(C,d),(C,e),(d,e),10种等可能的结果
抽取的2名均为男用户这一事件包含(A,B) ,(A,C) ,(B,C)共计3种等可能的结果,
由古典概型的计算公式可得.
(2)由图中表格可得列联表
不喜欢移动支付 | 喜欢移动支付 | 合计 | |
男 | 10 | 45 | 55 |
女 | 15 | 30 | 45 |
合计 | 25 | 75 | 100 |
将列联表中的数据代入公式计算得
,
所以,在犯错误概率不超过0.05的前提下,不能认为是否喜欢使用移动支付与性别有关.
科目:高中数学 来源: 题型:
【题目】设数列{an}满足a1=1,且an+1-an=n+1(n∈N*),则数列{an}的通项公式为________; 前10项的和为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面ABCD⊥平面ADEF,其中四边形ABCD为矩形,四边形ADEF为梯形,AF∥DE,AF⊥EF,AF=AD=2AB=2DE=2.
(1)求证:CE∥面ABF;
(2)求直线DE与平面BDF所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角坐标系中,圆与轴负半轴交于点,过点的直线,分别与圆交于两点.
(1)过点作圆的两条切线,切点分别为,求;
(2)若,求证:直线过定点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的外接球的表面积为( )
A. B. C. D.
【答案】B
【解析】几何体如图,球心为O,半径为,表面积为,选B.
点睛:涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.
【题型】单选题
【结束】
9
【题目】是双曲线的左右焦点,过且斜率为1的直线与两条渐近线分别交于两点,若,则双曲线的离心率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标坐标系中,曲线的参数方程为(为参数),曲线: .以为极点, 轴的非负半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系.
(1)求曲线的极坐标方程;
(2)射线()与曲线的异于极点的交点为,与曲线的交点为,求.
【答案】(1) 的极坐标方程为, 的极坐标方程为;(2) .
【解析】试题分析:(1)先根据三角函数平方关系消参数得曲线,再根据将曲线的极坐标方程;(2)将代人曲线的极坐标方程,再根据求.
试题解析:(1)曲线的参数方程(为参数)
可化为普通方程,
由,可得曲线的极坐标方程为,
曲线的极坐标方程为.
(2)射线()与曲线的交点的极径为,
射线()与曲线的交点的极径满足,解得,
所以.
【题型】解答题
【结束】
23
【题目】设函数.
(1)设的解集为,求集合;
(2)已知为(1)中集合中的最大整数,且(其中,,为正实数),求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有下列命题:①若,则;②若,则存在唯一实数,使得;③若,则;④若,且与的夹角为钝角,则;⑤若平面内定点满足,则为正三角形.其中正确的命题序号为 ________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com