精英家教网 > 高中数学 > 题目详情
12.求下列函数的定义域:
(1)y=23-x
(2)y=32x+1
(3)y=($\frac{1}{2}$)5x
(4)y=0.7${\;}^{\frac{1}{x}}$.

分析 根据函数成立的条件即可求函数的定义域.

解答 解:(1)函数y=23-x的定义域为(-∞,+∞).
(2)函数y=32x+1的定义域为(-∞,+∞).
(3)y=($\frac{1}{2}$)5x的定义域为(-∞,+∞).
(4)要使y=0.7${\;}^{\frac{1}{x}}$有意义,则x≠0,即函数的定义域为(-∞,0)∪(0,+∞).

点评 本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知f(x)=x2-4x,求f(x+2)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)计算:0.064${\;}^{-\frac{1}{3}}$-(-$\frac{7}{8}$)0+[(-2)3]${\;}^{-\frac{4}{3}}$+16-0.75+|-0.01|${\;}^{\frac{1}{2}}$;
(2)化简:$\root{3}{{a}^{\frac{9}{2}}\sqrt{{a}^{-3}}}$÷$\sqrt{\root{3}{{a}^{-7}}•\root{3}{{a}^{13}}}$(a>0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若1og(x-1)(3-x)有意义,则x的取值范围是(1,2)∪(2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=$\sqrt{{x}^{2}+3x+2}$+log23x的定义域(  )
A.{x|x≥1}B.{x|x≤-2}C.{x|x>0}D.{x|-2<x<-1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=$\frac{1}{\sqrt{9-{x}^{2}}}$的定义域为(  )
A.{x|-3≤x≤3}B.{x|-3<x<3}C.{x|-3≤x<3}D.{x|-3<x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知(x,y)满足不等式$\left\{\begin{array}{l}{2x-3y+2≥0}\\{3x-y-4≤0}\\{x+2y+1≥0}\end{array}\right.$,z=ax+y当且仅当在点(2,2)取得最大值,则a的取值范围是($-\frac{2}{3},+∞$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=$\sqrt{cos(sinx)}$的定义域是(  )
A.[-$\frac{π}{2}$+2kπ,2kπ](k∈Z)B.[-$\frac{π}{2}$+2kπ,$\frac{π}{2}$+2kπ](k∈Z)
C.[2kπ,$\frac{π}{2}$+2kπ](k∈Z)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.实数m取什么值时,复数(m2-5m+6)+(m2-3m)i是 (1)实数?(2)虚数?

查看答案和解析>>

同步练习册答案