分析 所证明的不等式的左侧是n-1项,因此是对数表达式,联想对数运算法则:ln$\frac{M}{N}$=lnM-lnN,引入辅助函数f(x)=$\frac{1-x}{x}$+lnx,由导数证明其在[1,+∞)上为增函数,得到f( $\frac{n}{n-1}$)>0,即:$\frac{1}{n}$<ln$\frac{n}{n-1}$,则数列不等式得证.
解答 证明:令f(x)=$\frac{1-x}{x}$+lnx,则f′(x)=$\frac{-x-1+x}{{x}^{2}}$+$\frac{1}{x}$=-$\frac{1}{{x}^{2}}$+$\frac{1}{x}$,
当x≥1时,f′(x)≥0,∴f(x)在[1,+∞)上为增函数,
∴n≥2时:f($\frac{n}{n-1}$)=$\frac{1-\frac{n}{n-1}}{\frac{n}{n-1}}$+ln$\frac{n}{n-1}$=ln$\frac{n}{n-1}$-$\frac{1}{n}$>f(1)=0,
即:$\frac{1}{n}$<ln$\frac{n}{n-1}$,
∴$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{n}$<lnn.
点评 本题考查了数列的求和,考查了利用构造函数法证明数列不等式,关键是构造出增函数f(x)=$\frac{1-x}{x}$+lnx,是难题.
科目:高中数学 来源: 题型:选择题
A. | f(x)=$\frac{{x}^{2}}{|x|}$ | B. | f(x)=$\sqrt{{x}^{2}}$ | C. | f(x)=($\sqrt{x}$)2 | D. | f(x)=$\root{3}{{x}^{3}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2014cm长的有向线段不可能表示单位向量 | |
B. | 若0是直线l上的一点,单位长度已选定,则l上有且只有两个点A,B,使得$\overrightarrow{OA}$,$\overrightarrow{OB}$是单位向量 | |
C. | 方向为北偏西50°的向量与南偏东50°的向量不可能是平行向量 | |
D. | 一人从A点向东走500米到达B点,则$\overrightarrow{AB}$不能表示这个人从A点到B点的位移 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com