精英家教网 > 高中数学 > 题目详情
已知函数和点P(1,0),过点P作曲线y=f(x)的两条切线PM、PN,切点分别为M、N.
(Ⅰ)设|MN|=g(t),试求函数g(t)的表达式;
(Ⅱ)是否存在t,使得M、N与A(0,1)三点共线.若存在,求出t的值;若不存在,请说明理由.
(Ⅲ)在(Ⅰ)的条件下,若对任意的正整数n,在区间内总存在m+1个实数a1,a2,…,am,am+1,使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求m的最大值.
【答案】分析:(I)设出M、N两点的横坐标分别为x1、x2,对函数求导得到切线的斜率,写出切线的方程,根据切线过一个点,得到一个方程,根据根与系数的关系写出两点之间的长度,得到函数的表示式.
(II)根据三点共线写出其中两点连线的斜率相等,整理出最简单形式,把上一问做出的结果代入,求出t的值.
(III)根据前面做出的函数只一个增函数,写出不同的自变量对应的函数值的不等关系,根据对于任意的正整数都成立,得到m的取值范围,得到最值.
解答:解:(Ⅰ)设M、N两点的横坐标分别为x1、x2

∴切线PM的方程为:
又∵切线PM过点P(1,0),∴有
即x12+2tx1-t=0,(1)
同理,由切线PN也过点P(1,0),得x22+2tx2-t=0.(2)
由(1)、(2),可得x1,x2是方程x2+2tx-t=0的两根,∴(*)
=
把(*)式代入,得
因此,函数g(t)的表达式为
(Ⅱ)当点M、N与A共线时,kMA=kNA
=,即=
化简,得(x2-x1)[t(x2+x1)-x1x2]=0
∵x1≠x2,∴t(x2+x1)=x2x1.(3)
把(*)式代入(3),解得
∴存在t,使得点M、N与A三点共线,且
(Ⅲ)知g(t)在区间上为增函数,
(i=1,2,,m+1),

依题意,不等式对一切的正整数n恒成立,

对一切的正整数n恒成立.
,∴
.由于m为正整数,∴m≤6.
又当m=6时,存在a1=a2═am=2,am+1=16,对所有的n满足条件.
因此,m的最大值为6.
点评:本题考查函数的综合题目,主要应用导函数求最值来解题,本题解题的关键是正确应用导数,本题是一个综合题目,综合性比较强,可以作为高考卷的压轴题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数数学公式和点P(1,0),过点P作曲线y=f(x)的两条切线PM,PN,切点分别为M(x1,y1),N(x2,y2).
(1)求证:x1,x2是关于x的方程x2+2tx-t=0的两根;
(2)设|MN|=g(t),求函数g(t);
(3)在(2)的条件下,若在区间[2,16]内总存在m+1个实数a1,a2,…,am+1,使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源:广东省同步题 题型:解答题

已知函数和点P(1,0),过点P作曲线y=f(x)的两条切线PM、PN,切点分别为M、N.
(Ⅰ)设|MN|=g(t),试求函数g(t)的表达式;
(Ⅱ)是否存在t,使得M、N与A(0,1)三点共线.若存在,求出t的值;若不存在,请说明理由.
(Ⅲ)在(Ⅰ)的条件下,若对任意的正整数n,在区间内总存在m+1个实数a1,a2,…,am,a m+1,使得不等式g(a1)+g(a2)+…+g(am)<g(a m+1)成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省盐城市景山中学高三(上)12月月考数学试卷(解析版) 题型:解答题

已知函数和点P(1,0),过点P作曲线y=f(x)的两条切线PM、PN,切点分别为M、N.
(Ⅰ)设|MN|=g(t),试求函数g(t)的表达式;
(Ⅱ)是否存在t,使得M、N与A(0,1)三点共线.若存在,求出t的值;若不存在,请说明理由.
(Ⅲ)在(Ⅰ)的条件下,若对任意的正整数n,在区间内总存在m+1个实数a1,a2,…,am,am+1,使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源:2007年浙江省杭州市高考数学二模试卷(理科)(解析版) 题型:解答题

已知函数和点P(1,0),过点P作曲线y=f(x)的两条切线PM、PN,切点分别为M、N.
(Ⅰ)设|MN|=g(t),试求函数g(t)的表达式;
(Ⅱ)是否存在t,使得M、N与A(0,1)三点共线.若存在,求出t的值;若不存在,请说明理由.
(Ⅲ)在(Ⅰ)的条件下,若对任意的正整数n,在区间内总存在m+1个实数a1,a2,…,am,am+1,使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求m的最大值.

查看答案和解析>>

同步练习册答案