精英家教网 > 高中数学 > 题目详情
命题p:?x∈R,x2+ax+a2≥0;命题q:?x∈R,sinx+cosx=2,则下列命题中为真命题的是(  )
分析:利用一元二次函数的判别式与三角函数的值域判断命题p、q的真假,再由复合命题真值表逐个判断各选项是否为真命题.
解答:解:∵△=a2-4a2=-3a2≤0,
∴命题p:?x∈R,x2+ax+a2≥0;是真命题;
∵sinx+cosx=
2
sin(x+
π
4
)≤
2
<2,
∴命题q:?x∈R,sinx+cosx=2,为假命题;
由复合命题真值表得:p∧q是假命题,故A错误;p∨q为真命题,故B正确;¬p∨q是假命题,故C错误;(¬p)∧(¬q)为假命题,故D错误,
故选B.
点评:本题借助考查复合命题的真假,考查了三角函数的值域与全称命题、特称命题,判断命题p、q的真假是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1、已知命题 p:?x∈R,x≥1,那么命题?p为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

2、已知命题p:?x∈R,|x|≥0,那么命题?p为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题 p:?x∈R,x≥2,那么命题?p为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:“?x∈R,|x-2|<3”,那么?p是(  )
A、?x∈R,|x-2|>3B、?x∈R,|x-2|≥3C、?x∈R,|x-2|<3D、?x∈R,|x-2|≥3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知命题p:?x∈R,|x|≥0,那么命题?p为(  )
A.?x∈R,|x|≤0B.?x∈R,|x|≤0C.?x∈R,|x|<0D.?x∈R,|x|<0

查看答案和解析>>

同步练习册答案