A. | 3$\sqrt{6}$ | B. | 4$\sqrt{6}$ | C. | 6$\sqrt{6}$ | D. | 12$\sqrt{6}$ |
分析 根据向量加法的几何意义得出P点轨迹,利用正弦定理解出AB,得出△ABC的面积,从而求出围成封闭区域的面积,从而求出围成封闭区域的面积.
解答 解:延长AB至D,使得AD=2AB,连结CD,则
∵$\overrightarrow{AP}$=2$λ\overrightarrow{AB}$+(1-λ)$\overrightarrow{AC}$=λ$\overrightarrow{AD}$+(1-λ)$\overrightarrow{AC}$.
∴C,D,P三点共线.
∴P点轨迹为直线CD.
在△ABC中,sinA=$\frac{2\sqrt{6}}{5}$.sinC=$\frac{5}{7}$.
由正弦定理得AB=5.
sinB=sin(A+C)=sinAcosC+cosAsinC=$\frac{12\sqrt{6}}{35}$
∴S△ABC=$\frac{1}{2}×5×7×\frac{12\sqrt{6}}{35}$=6$\sqrt{6}$
∴S△ACD=2S△ABC=12$\sqrt{6}$.
故选:D.
点评 本题考查了平面向量线性运算的几何意义,考查学生的计算能力,确定P点轨迹是关键,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -2 | B. | 0 | C. | 4 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com