精英家教网 > 高中数学 > 题目详情
求圆心在l1:y-3x=0上,与x轴相切,且被直线l2:x-y=0截得弦长为4
7
的圆的方程.
∵圆心在直线y-3x=0上,且与x轴相切,
∴可设圆的圆心为C(a,3a),半径r=|3a|.
圆的方程为(x-a)2+(y-3a)2=9a2
点C到直线l2:x-y=0的距离为d=
|a-3a|
2
=
2
|a|,
∵圆C被直线l2:x-y=0截得弦长为4
7

∴根据垂径定理,得
r2-d2
=2
7
,即
9a2-2a2
=2
7
,解之得a=±2,
因此,圆的圆心为(2,6),半径r=6,或圆心为(-2,-6),半径r=6.
所求圆的标准方程为(x-2)2+(y-6)2=36或(x+2)2+(y+6)2=36.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知以原点为中心的双曲线的一条准线方程为,离心率

(Ⅰ)求该双曲线的方程;
(Ⅱ)如图,点的坐标为是圆上的点,点在双曲线右支上,求的最小值,并求此时点的坐标;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

圆心在直线3x+2y=0上,并且与x轴交于点(-2,0)和(6,0)的圆的方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆心在第二象限,半径为2
2
的圆C与直线y=x相切于坐标原点O,过点D(-3,0)作直线l与圆C相交于A,B两点,且|DA|=|DB|.
(1)求圆C的方程;
(2)求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

圆C与直线y=x-2相切于点P,且圆心C在x轴的正半轴上,半径r=
2

(1)求圆C的方程;
(2)求△POC的面积.(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xoy中,设二次函数f(x)=x2+2x+b(x∈R)的图象与两坐标轴有三个不同的交点.经过这三个交点的圆记为C.
(I)求实数b的取值范围;
(II)求圆C的一般方程;
(III)圆C是否经过某个定点(其坐标与b无关)?若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,方程为x2+y2+Dx+Ey+F=0的圆M的内接四边形ABCD的对角线AC和BD互相垂直,且AC和BD分别在x轴和y轴上.
(1)求证:F<0;
(2)若四边形ABCD的面积为8,对角线AC的长为2,且
AB
AD
=0,求D2+E2-4F的值;
(3)设四边形ABCD的一条边CD的中点为G,OH⊥AB且垂足为H.试用平面解析几何的研究方法判断点O、G、H是否共线,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点M(3,1),直线ax-y+4=0及圆(x-1)2+(y-2)2=4.
(1)求过M点的圆的切线方程;
(2)若直线ax-y+4=0与圆相切,求a的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆A:(x-2)2+y2=1,曲线B:6-x=
4-y2
和直线l:y=x.
(1)若点M、N、P分别是圆A、曲线B和直线l上的任意点,求|PM|+|PN|的最小值;
(2)已知动直线m:(a-2)x+by-2a+3=0(a,b∈R)与圆A相交于S、T两点,又点Q的坐标是(a,b).
①判断点Q与圆A的位置关系;
②求证:当实数a,b的值发生变化时,经过S、T、Q三点的圆总过定点,并求出这个定点坐标.

查看答案和解析>>

同步练习册答案