【题目】已知函数,记在点处的切线为.
(1)当时,求证:函数的图像(除切点外)均为切线的下方;
(2)当时,求的最小值.
【答案】(1)见解析;(2)
【解析】
(1)求得f(x)的导数,考虑极值点以及函数的凹凸性,即可得证;
(2)讨论a<0,a=0,a>1,a=1,0<a<1时,函数h(x)=f(x)﹣2lnx的导数和单调性,最值,即可得到所求g(x)的最小值.
(1)设切线方程为
记 .
,,,
,
在上单调递减.
,,在上单调递增,
,,在上单调递减.
∴,即,当且仅当时取“”.
故命题成立
(2).
设,,
1)当时,,则在上单调递减,且.
∴,在上单调递增.
∴
2)当时,,
设,,有两根,,
,,不妨令,
,,即,在上单调递减,
,,即,在上单调递增,
①当,即,,在上单调递增.
,∴;
②当,即时,,
,在上单调递减,在上单调递增,
,
,
存在使得,
∴.
综上可得.
科目:高中数学 来源: 题型:
【题目】下列四个命题:
①函数是奇函数且在定义域上是单调递增函数;
②函数有两个零点,则;
③函数,则的解集为;
④函数的单调递减区间为.
其中正确命题的序号为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲乙两人同时各接受了600个零件的加工任务,甲比乙每分钟加工的数量多,两人同时开始加工,加工过程中甲因故障停止一会后又继续按原速加工,直到他们完成任务.如图表示甲比乙多加工的零件数量y(个)与加工时间x(分)之间的函数关系,A点横坐标为10,B点坐标为,C点横坐标为105.则甲每分钟加工的数量是_______,点D的坐标是_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角三棱柱中,、分别为、的中点,,.
(1)求证:平面;
(2)求证:平面平面;
(3)若直线和平面所成角的正弦值等于,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 过点,离心率为.
(1)求椭圆的方程;
(2), 是过点且互相垂直的两条直线,其中交圆于, 两点, 交椭圆于另一个点,求面积取得最大值时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种.
方案一:每满100元减20元;
方案二:满100元可抽奖一次.具体规则是从装有2个红球、2个白球的箱子随机取出3个球(逐个有放回地抽取),所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)
红球个数 | 3 | 2 | 1 | 0 |
实际付款 | 7折 | 8折 | 9折 | 原价 |
(1)该商场某顾客购物金额超过100元,若该顾客选择方案二,求该顾客获得7折或8折优惠的概率;
(2)若某顾客购物金额为180元,选择哪种方案更划算?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com