精英家教网 > 高中数学 > 题目详情
8.设函数f(x)=$\frac{{a{x^3}}}{3}-b{x^2}+{a^2}x-\frac{1}{3}$在x=1处取得极值为0,则a+b=-$\frac{7}{9}$.

分析 求出导函数,根据定义可知f'(1)=a-2b+a2=0,f(1)=0,得出a=1或a=-$\frac{2}{3}$,由极值概念可知a=1不成立,故a=-$\frac{2}{3}$,b=-$\frac{1}{9}$,得出答案.

解答 解:∵f(x)=$\frac{{a{x^3}}}{3}-b{x^2}+{a^2}x-\frac{1}{3}$,
∴f'(x)=ax2-2bx+a2
∵在x=1处取得极值为0,
∴f'(1)=a-2b+a2=0,
f(1)=0,
∴a=1或a=-$\frac{2}{3}$,
∵函数有极值,a=1不成立.
∴a=-$\frac{2}{3}$,b=-$\frac{1}{9}$,
故答案为-$\frac{7}{9}$.

点评 本题考查了极值的概念和导函数的应用,属于基础题型,应熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.在平面直角坐标系中,已知点P(-2,2),对于任意不全为零的实数a、b,直线l:a(x-1)+b(y+2)=0,若点P到直线l的距离为d,则d的取值范围是[0,5].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数$f(x)=cos({2x+\frac{π}{3}})+{sin^2}x$.
(1)求函数y=f(x)的最大值和最小正周期;
(2)设A、B、C为△ABC的三个内角,若$cosB=\frac{1}{3}$,$f({\frac{C}{3}})=-\frac{1}{4}$,求sinA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l的参数方程为$\left\{\begin{array}{l}x=tcosα\\ y=1+tsinα\end{array}\right.$(t为参数,$\frac{π}{2}≤α<π$),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2cosθ.
(Ⅰ)讨论直线l与圆C的公共点个数;
(Ⅱ)过极点作直线l的垂线,垂足为P,求点P的轨迹与圆C相交所得弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,△ABC为边长为2的正三角形,AE∥CD,且AE⊥平面ABC,2AE=CD=2.
(1)求证:平面BDE⊥平面BCD;
(2)求二面角D-EC-B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知某口袋中有3个白球和a个黑球(a∈N*),现从中随机取出一球,再换回一个不同颜色的球(即若取出的是白球,则放回一个黑球;若取出的是黑球,则放回一个白球),记换好球后袋中白球的个数是ξ.若Eξ=3,则Dξ=(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x(1+a|x|)(a∈R),则在同一个坐标系下函数f(x+a)与f(x)的图象不可能的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.随着“全面二孩”政策推行,我市将迎来生育高峰,今年新春伊始,各医院产科就已经一片忙碌,至今热度不减,卫生部门进行调查统计,期间发现各医院的新生儿中,不少都是“二孩”,在人民医院,共有50个宝宝降生,其中25个是“二孩”宝宝;博爱医院共有30个宝宝降生,其中10个是“二孩”宝宝.
(1)根据以上数据,完成下面的2×2列联表,并判断是否有90%的把握认为一孩或二孩宝宝的出生与医院有关?
 一孩二孩合计
人民医院   
博爱医院   
合计   
(2)从两个医院当前出生的所有宝宝中按分层抽样方法抽取8个宝宝做健康咨询,若从这8个宝宝抽取两个宝宝进行体检.求这两个宝宝恰好都是来自人民医院的概率.
附:${K^2}=\frac{{n{{({αb-bc})}^2}}}{{({α+b})({c+d})({α+c})({b+d})}}$
P(k2>k00.40.250.150.10
k00.7081.3232.0722.706

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知一个圆锥底面半径为1,母线长为3,则该圆锥内切球的表面积为(  )
A.πB.$\frac{3π}{2}$C.D.

查看答案和解析>>

同步练习册答案