【题目】如图,直三棱柱的底面为正三角形,
、
、
分别是
、
、
的中点.
⑴若,求证:
平面
;
⑵若为
中点,
,四棱锥
的体积为
,求三棱锥
的表面积.
科目:高中数学 来源: 题型:
【题目】某商场拟对某商品进行促销,现有两种方案供选择,每种促销方案都需分两个月实施,且每种方案中第一个月与第二个月的销售相互独立.根据以往促销的统计数据,若实施方案1,预计第一个月的销量是促销前的1.2倍和1.5倍的概率分别是0.6和0.4,第二个月的销量是第一个月的1.4倍和1.6倍的概率都是0.5;若实施方案2,预计第一个月的销量是促销前的1.4倍和1.5倍的概率分别是0.7和0.3,第二个月的销量是第一个月的1.2倍和1.6倍的概率分别是0.6和0.4.令表示实施方案
的第二个月的销量是促销前销量的倍数.
(Ⅰ)求,
的分布列;
(Ⅱ)不管实施哪种方案, 与第二个月的利润之间的关系如下表,试比较哪种方案第二个月的利润更大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某养殖场需定期购买饲料,已知该场每天需要饲料200千克,每千克饲料的价格为1.8元,饲料的保管费与其他费用平均每千克每天0.03元,购买饲料每次支付运费300元.
(1)求该场多少天购买一次饲料才能使平均每天支付的总费用最少;
(2)若提供饲料的公司规定,当一次购买饲料不少于5吨时,其价格可享受八五折优惠(即原价为85%).问:该场是否应考虑利用此优惠条件?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点的坐标为
,圆
的方程为
,动点
在圆
上运动,点
为
延长线上一点,且
.
(1)求点的轨迹方程.
(2)过点作圆
的两条切线
,
,分别与圆
相切于点
,
,求直线
的方程,并判断直线
与点
所在曲线的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆:
的离心率与双曲线
的离心率互为倒数,且椭圆的长轴长为4.
(1)求椭圆的标准方程;
(2)若直线交椭圆
于
,
两点,
(
)为椭圆
上一点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分10分)选修4—4:坐标系与参数方程
在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)直线的极坐标方程是
,射线
与圆C的交点为O、P,与直线
的交点为Q,求线段PQ的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【江西省临川实验学校2017届高三第一次模拟考试数学(文)】已知抛物线,焦点为
,点
在抛物线
上,且
到
的距离比
到直线
的距离小1.
(1)求抛物线的方程;
(2)若点为直线
上的任意一点,过点
作抛物线
的切线
与
,切点分别为
,求证:直线
恒过某一定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的中心在原点,焦点F1、F2在坐标轴上,离心率为且过点(4,-
).
(1)求双曲线方程;
(2)若点M(3,m)在双曲线上,求证:点M在以F1F2为直径的圆上;
(3)求△F1MF2的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:
经过点
,左右焦点分别为
、
,圆
与直线
相交所得弦长为2.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设是椭圆
上不在
轴上的一个动点,
为坐标原点,过点
作
的平行线交椭圆
于
、
两个不同的点,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com