【题目】如图,在四棱锥PABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
(1)证明:AE⊥平面PCD;
(2)求二面角A-PD-C的正弦值.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)(x∈R)满足f(x)=f(2-x),且对任意的x1,x2∈(-∞,1](x1≠x2)有(x1-x2)(f(x1)-f(x2))<0.则( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,其中AD∥BC,AB⊥AD,AB=AD= BC, = .
(1)求证:DE⊥平面PAC;
(2)若直线PE与平面PAC所成角的正弦值为 ,求二面角A﹣PC﹣D的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C的参数方程是 (θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,A、B的极坐标分别为A﹣(2,0)、B(﹣1, )
(1)求直线AB的直角坐标方程;
(2)在曲线C上求一点M,使点M到AB的距离最大,并求出些最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线C: (a>0,b>0)的左、右焦点分别为F1 , F2 , 点M与双曲线C的焦点不重合,点M关于F1 , F2的对称点分别为A,B,线段MN的中点在双曲线的右支上,若|AN|﹣|BN|=12,则a=( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题:
①圆与直线相交,所得弦长为;
②直线与圆恒有公共点;
③若棱长为的正方体的顶点都在同一球面上,则该球的表面积为;
④若棱长为的正四面体的顶点都在同一球面上,则该球的体积为.
其中,正确命题的序号为__________.(写出所有正确命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}共有5项,其中a1=0,a5=2,且|ai+1﹣ai|=1,i=1,2,3,4,则满足条件的不同数列的个数为( )
A.3
B.4
C.5
D.6
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com