精英家教网 > 高中数学 > 题目详情

【题目】若关于x的不等式的解集为 , 且函数在区间上不是单调函数,则实数m的取值范围为 ( )
A.
B.
C.
D.

【答案】A
【解析】由不等式的解集为可得的两根为 , 故可求得 , 所以由函数上不是单调函数,可知有解,当在有一解时有解得 , 当在有两解时有解得 , 综上可得 , 故选A.
【考点精析】掌握函数单调性的性质和解一元二次不等式是解答本题的根本,需要知道函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集;求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣6x2+9x,g(x)= x3 x2+ax﹣ (a>1)若对任意的x1∈[0,4],总存在x2∈[0,4],使得f(x1)=g(x2),则实数a的取值范围为(
A.(1, ]
B.[9,+∞)??
C.(1, ]∪[9,+∞)
D.[ ]∪[9,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市公租房的房源位于A,B,C,D四个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,在该市的甲、乙、丙三位申请人中:
(1)求恰有1人申请A片区房源的概率;
(2)用x表示选择A片区的人数,求x的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={a1 , a2 , …,an},ai∈R,i=1,2,…,n,并且n≥2. 定义 (例如: ).
(Ⅰ)若A={1,2,3,4,5,6,7,8,9,10},M={1,2,3,4,5},集合A的子集N满足:N≠M,且T(M)=T(N),求出一个符合条件的N;
(Ⅱ)对于任意给定的常数C以及给定的集合A={a1 , a2 , …,an},求证:存在集合B={b1 , b2 , …,bn},使得T(B)=T(A),且
(Ⅲ)已知集合A={a1 , a2 , …,a2m}满足:ai<ai+1 , i=1,2,…,2m﹣1,m≥2,a1=a,a2m=b,其中a,b∈R为给定的常数,求T(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等腰三角形ABC,E为底边BC的中点,沿AE折叠,如图,将C折到点P的位置,使P﹣AE﹣C为120°,设点P在面ABE上的射影为H.
(1)证明:点H为EB的中点;
(2)若 ,求直线BE与平面ABP所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数x、y满足 ,目标函数z=x+ay.
(1)当a=﹣2时,求目标函数z的取值范围;
(2)若使目标函数取得最小值的最优解有无数个,求 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在各项均为正数的等比数列{an}中,a1=2,且2a1 , a3 , 3a2成等差数列.
(Ⅰ) 求等比数列{an}的通项公式;
(Ⅱ) 若数列{bn}满足bn=11﹣2log2an , 求数列{bn}的前n项和Tn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某程序框图如图所示,现输入如下四个函数,则可以输出的函数是(

A.f(x)=x2
B.f(x)=
C.f(x)=ex
D.f(x)=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos4x+sin2x,下列结论中错误的是(
A.f(x)是偶函数
B.函f(x)最小值为
C. 是函f(x)的一个周期
D.函f(x)在(0, )内是减函数

查看答案和解析>>

同步练习册答案