【题目】已知空间几何体中,与均为边长为的等边三角形,为腰长为的等腰三角形,平面平面,平面平面.
(1)试在平面内作一条直线,使直线上任意一点与的连线均与平面平行,并给出详细证明
(2)求点到平面的距离
【答案】(1)见解析;(2)
【解析】
(1)取BC和BD的中点H、G,利用面面平行的判断定理证得平面CDE平行平面AHG即可求得结果;
(2)分别求得三角形ABC和CDE的面积以及求得E到平面ABC的距离,再利用等体积法即可求得到平面的距离.
如图所示:取BC和BD的中点H、G,连接HG,HG为所求直线,
证明如下:因为BC和BD的中点H、G,所以,
又平面平面,且平面BCD
又平面平面. ,得,
所以 ,即
所以,所以直线HG上任意一点与的连线均与平面平行.
由(1)可得,即平面ABC
所以点E到平面ABC的距离和点O到平面ABC的距离相等,记为
三角形ABC的面积
而三角形ACE的面积
用等体积法可得:
科目:高中数学 来源: 题型:
【题目】如图,,,,,分别为,边的中点,以为折痕把折起,使点到达点的位置,且..
(Ⅰ)证明:平面;
(Ⅱ)设为线段上动点,求直线与平面所成角的正弦值的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】奖饭店推出甲.乙两种新菜品,为了了解两种菜品的受欢迎程度,现统计一周内两种菜品每天的销售量,得到下面的茎叶图.下列说法中,不正确的是( )
A.甲菜品销售量的众数比乙菜品销售量的众数小
B.甲菜品销售量的中位数比乙菜品销售量的中位数小
C.甲菜品销售量的平均值比乙菜品销售量的平均值大
D.甲菜品销售量的方差比乙菜品销售量的方差大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正方形和矩形所在的平面互相垂直,,点在线段上.
(Ⅰ)若为的中点,求证:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)证明:存在点,使得平面,并求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每种单价(元)试销l天,得到如表单价(元)与销量(册)数据:
单价(元) | 18 | 19 | 20 | 21 | 22 |
销量(册) | 61 | 56 | 50 | 48 | 45 |
(l)根据表中数据,请建立关于的回归直线方程:
(2)预计今后的销售中,销量(册)与单价(元)服从(l)中的回归方程,已知每册书的成本是12元,书店为了获得最大利润,该册书的单价应定为多少元?
附:,,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,数列A:,,…中的项均为不大于的正整数.表示,,…中的个数().定义变换,将数列变成数列:,,…其中.
(1)若,对数列:,写出的值;
(2)已知对任意的(),存在中的项,使得.求证: ()的充分必要条件为();
(3)若,对于数列:,,…,令:,求证:().
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知函数的零点构成一个公差为的等差数列,把函数的图像沿轴向左平移个单位,得到函数的图像,关于函数,下列说法正确的是( )
A. 在上是增函数
B. 其图像关于对称
C. 函数是奇函数
D. 在区间上的值域为[-2,1]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥,底面为菱形,,为上的点,过的平面分别交,于点,,且平面.
(1)证明:;
(2)当为的中点,,与平面所成的角为,求与平面所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com