精英家教网 > 高中数学 > 题目详情

【题目】某仪器经过检验合格才能出厂,初检合格率为:若初检不合格,则需要进行调试,经调试后再次对其进行检验;若仍不合格,作为废品处理,再检合格率为.每台仪器各项费用如表:

项目

生产成本

检验费/次

调试费

出厂价

金额(元)

1000

100

200

3000

(Ⅰ)求每台仪器能出厂的概率;

(Ⅱ)求生产一台仪器所获得的利润为1600元的概率(注:利润出厂价生产成本检验费调试费);

(Ⅲ)假设每台仪器是否合格相互独立,记为生产两台仪器所获得的利润,求的分布列和数学期望.

【答案】(Ⅰ);(Ⅱ);(Ⅲ)见解析.

【解析】试题分析:(Ⅰ)每台仪器能出厂的对立事件为不能出厂,根据对立事件的概率可得结果;(Ⅱ)由表可知生产一台仪器所获得的利润为元即初检不合格再次检测合格,根据相互独立事件同时发生的概率可得结果;(Ⅲ)由题意可得可取 ,根据相互独立事件同时发生的概率计算出概率,可得分布列及期望.

试题解析:(Ⅰ)记每台仪器不能出厂为事件,则

所以每台仪器能出厂的概率

(Ⅱ)生产一台仪器利润为1600的概率

(Ⅲ)可取

的分布列为:

3800

3500

3200

500

200

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业为了了解职工的工作状况,随机抽取了一个车间对职工工作时间的情况进行暗访,工作时间在小时及以上的为合格.把所得数据进行整理后,分成组画出频率分布直方图(如图所示),但由于工作疏忽,没有画出最后一组,只知道最后一组的频数是.

(Ⅰ)求这次暗访中工作时间不合格的人数;

(Ⅱ)已知在工作时间超过小时的人中有两名女职工,现要从工作时间在小时以上的人中选出两名代表在职工代表大会上发言,求至少选出一位女职工作代表的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个极值点 ).

(1)求实数的取值范围;

(2)设,若函数的两个极值点恰为函数的两个零点,当时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分13分甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:

甲:82 81 79 78 95 88 93 84

乙:92 95 80 75 83 80 90 85

1用茎叶图表示这两组数据;

2现要从中选派一人参加数学竞赛,从统计学的角度在平均数、方差或标准差中选两个考虑,你认为选派哪位学生参加合适?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为实数,,记集合,则下列命题为真命题的是(

A.若集合的元素个数为2,则集合的元素个数也一定为2

B.若集合的元素个数为2,则集合的元素个数也一定为2

C.若集合的元素个数为3,则集合的元素个数也一定为3

D.若集合的元素个数为3,则集合的元素个数也一定为3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线,倾斜角为,以为极点, 轴在平面直角坐标系中,直线,曲线为参数),坐标原点为极点,以轴正半轴为极轴,建立极坐标系.

(1)求的极坐标方程;

(2)若曲线的极坐标方程为,且曲线分别交于点两点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 在点处的切线与直线平行,且函数有两个零点.

(1)求实数的值和实数的取值范围;

(2)记函数的两个零点为求证: 其中为自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系xoy中,已知直线的参数方程为为参数, 以原点O为极点,以轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为

(1)写出直线的极坐标方程和曲线C的直角坐标方程;

(2)若直线与曲线C相交于A,B 两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直角梯形 分别是边上的点沿折起并连接成如图的多面体折后

(Ⅰ)求证:

(Ⅱ)若折后直线与平面所成角的正弦值是求证平面平面

查看答案和解析>>

同步练习册答案