精英家教网 > 高中数学 > 题目详情

【题目】现需要设计一个仓库,由上下两部分组成,上部的形状是正四棱锥,下部的形状是正四棱柱(如图所示),并要求正四棱柱的高是正四棱锥的高的4倍.

(1)若,则仓库的容积是多少?

(2)若正四棱锥的侧棱长为,当为多少时,下部的正四棱柱侧面积最大,最大面积是多少?

【答案】(1)(2)当时,下部分正四棱柱侧面积最大,最大面积是.

【解析】

(1)直接利用棱锥和棱柱的体积公式求解即可;

(2)设,下部分的侧面积为,由已知正四棱柱的高是正四棱锥的高的4倍.可以求出的长,利用正四棱锥的侧棱长,结合勾股定理,可以求出的长,由正方形的性质,可以求出的长,这样可以求出的表达式,利用配方法,可以求出的最大值.

(1),则

.

故仓库的容积为.

(2)设,下部分的侧面积为

时,

答:当时,下部分正四棱柱侧面积最大,最大面积是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】平面四边形中,.

(1)若,求;

(2)设,若,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线轴,轴的交点分别为,圆以线段为直径.

(Ⅰ)求圆的标准方程;

(Ⅱ)若直线过点,与圆交于点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0)过点M(m,2),其焦点为F,且|MF|=2.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设E为y轴上异于原点的任意一点,过点E作不经过原点的两条直线分别与抛物线C和圆F:(x﹣1)2+y2=1相切,切点分别为A,B,求证:直线AB过定点F(1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当,求函数的单调区间;

(2)若函数上是减函数,求的最小值;

(3)证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知锐角的外接圆的半径为1,,则的面积的取值范围为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正四棱锥中, 分别是

的中点,动点在线段上运动时,下列结论中不恒成立的是(  )

A. 异面 B. ∥面

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(
A.命题“?x∈R,2x>0”的否定是“?x0∈R,2 <0”
B.命题“若sinx=siny,则x=y”的逆否命题为真命题
C.若命题p,¬q都是真命题,则命题“p∧q”为真命题
D.命题“若△ABC为锐角三角形,则有sinA>cosB”是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校从参加今年自主招生考试的学生中随机抽取容量为的学生成绩样本,得频率分布表如下:

组号

分组

频率

频数

第一组

第二组

第三组

第四组

第五组

合计

1)写出表中①、②位置的数据;

2)估计成绩不低于分的学生约占多少;

3)为了选拔出更优秀的学生,高校决定在第三、四、五组中用分层抽样法抽取名学生进行第二轮考核,分别求第三、四、五各组参加考核的人数.

查看答案和解析>>

同步练习册答案