精英家教网 > 高中数学 > 题目详情
13.已知f(x)的图象与g(x)=($\frac{1}{2}$)x的图象关于直线y=x对称,那么f(2x-x2)的值域是(  )
A.RB.(-∞,0]C.(0,+∞)D.[0,+∞)

分析 由反函数知f(x)=$lo{g}_{\frac{1}{2}}x$=-log2x,而0<2x-x2≤1,从而解值域.

解答 解:∵f(x)的图象与g(x)=($\frac{1}{2}$)x的图象关于直线y=x对称,
∴f(x)=$lo{g}_{\frac{1}{2}}x$=-log2x,
∵0<2x-x2≤1,
∴f(2x-x2)的值域是[0,+∞),
故选D.

点评 本题考查了反函数的应用及对数函数的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知命题p:在x∈[1,2]内,不等式x2+ax-2>0恒成立;命题q:函数f(x)=$lo{g}_{\frac{1}{2}}({x}^{2}-2ax+3a)$是区间[1,+∞)上的减函数,若命题“p∨q”是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.“a>b”是“a+c>b+c”的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=2x-1-1的零点为(  )
A.(1,0)B.(2,1)C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{|ln(x-1)|+3,x>1}\\{-{x}^{2}-2x+1,x≤1}\end{array}\right.$,若关于x的方程f2(x)+bf(x)+3b-2=0有4个不同的实数根,则实数b的取值范围是(-$\frac{2}{5}$,6-2$\sqrt{7}$)∪[-2,-$\frac{7}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.与直线3x-4y-2=0平行且距离为2的直线方程为3x-4y-12=0或3x-4y+8=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知在△ABC中,内角A,B,C所对的边分别为a,b,c(a<c),且$\frac{acosB+bcosA}{c}$=2cosC.
(1)若sinA=$\frac{\sqrt{10}}{10}$,求cosB的值;
(2)若S△ABC=2$\sqrt{3}$,a=4,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.北京时间2015年07月31日17时57分,在马来西亚首都吉隆坡举行的国际奥委会第128次全会上,国际奥委会主席托马斯.巴赫宣布北京赢得2022年第二十四届冬季奥林匹克运动会(以下简称冬奥会)的举办权,华夏大地一片欢腾,某高中为了调查学生对冬奥会的了解惰况,组织了“冬奥会知多少”的知识问卷测试,从该校2400名学生中随机抽取12人进行知识问卷测试,测试成绩(百分制)以茎叶图形式表示(如图所示),根据主办方标准,测试成绩低于80分的为“非体育迷”,不低于80分的为“体育迷”,
(1)将频率视为概率,根据样本估计总体的思想,若从该校学生中任选4人进行深度访谈,求恰好有1人是“体育迷”的概率;
(2)从抽取的12名学生中随机选取3人,记ξ表示“体育迷”的人数,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知直线l1:y=kx,l2:y=2x+3,若两直线垂直,则k=-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案