精英家教网 > 高中数学 > 题目详情
4.在(1+x)(2+x)5的展开式中,x3的系数为120(用数字作答).

分析 根据(2+x)5的展开式的通项公式,计算在(1+x)(2+x)5的展开式中含x3的项是什么,从而求出x3的系数.

解答 解:(2+x)5的展开式的通项是
${T_{k+1}}=C_5^k{2^{5-k}}{x^k}$,
所以在(1+x)(2+x)5=(2+x)5+x(2+x)5的展开式中,
含x3的项为$C_5^3{2^2}{x^3}+xC_5^2{2^3}{x^2}=120{x^3}$,
所以x3的系数为120.
故答案为:120.

点评 本题考查了二项式展开式的通项公式的应用问题,也考查了逻辑推理与计算能力,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.如图,在平行四边形ABCD中,∠BAD=120°,AB=2,AD=1,若$\overrightarrow{DE}=t\overrightarrow{DC}$,AE⊥BD,则实数t的值为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)是定义在R上的偶函数,且f(0)=-1,且对任意x∈R,有f(x)=-f(2-x)成立,则f(2015)的值为(  )
A.1B.-1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.复数z满足(1+i)z=2i(i为虚数单位),则z在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2lnx-x2-ax,g(x)=-alnx+x2+3ax+$\frac{1}{x}$,a∈R.
(1)当a=0时,求f(x)的极值;
(2)令h(x)=f(x)+g(x),求函数h(x)的单调减区间;
(3)如果x1,x2是函数f(x)的两个零点,且x1<x2<4x1,f′(x)是f(x)的导函数,证明:f′($\frac{2{x}_{1}+{x}_{2}}{3}$)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,设α∈(0,π)且$α≠\frac{π}{2}$,当∠xOy=α时,定义平面坐标系xOy为斜坐标系,在斜坐标系中,任意一点P的斜坐标这样定义:e1,e2分别为x轴、y轴正方向相同的单位向量,若$\overrightarrow{OP}=x{e_1}+y{e_2}$,则记为$\overrightarrow{OP}=(x,y)$,那么在以下的结论中,正确的有(2)(4)(填上所有正确结论的序号).
(1)设a=(m,n),则$|a|=\sqrt{{m^2}+{n^2}}$;
(2)设a=(m,n),b=(s,t),若a=b,则m=s,n=t;
(3)设a=(m,n),b=(s,t),若a⊥b,则ms+nt=0;
(4)设a=(m,n),b=(s,t),若a∥b,则mt-ns=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=2x+3,g(x)=3x-5,A={y|y=f(g(x))},B={(x,y)|y=g(f(x))},则 A∩B=∅.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设命题p:?x∈[1,2],$\frac{1}{2}{x^2}$-lnx-a≥0,命题q:?x0∈R,使得x02+2ax0-8-6a≤0,如果命题“p或q”是真命题,命题“p且q”是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.对于实数a和b,定义运算*:$a*b=\left\{\begin{array}{l}{a^2}-ab(a≤b)\\{b^2}-ab(a>b)\end{array}\right.$,设f(x)=(2x-1)*(x-1),若直线y=m与函数y=f(x)恰有三个不同的交点,则m的取值范围(0,$\frac{1}{4}$).

查看答案和解析>>

同步练习册答案