精英家教网 > 高中数学 > 题目详情
4.不等式ex≥kx对任意实数x恒成立,则实数k的最大值为e.

分析 由题意可得f(x)=ex-kx≥0恒成立,即有f(x)min≥0,求出f(x)的导数,求得单调区间,讨论k,可得最小值,解不等式可得k的最大值.

解答 解:不等式ex≥kx对任意实数x恒成立,即为
f(x)=ex-kx≥0恒成立,
即有f(x)min≥0,
由f(x)的导数为f′(x)=ex-k,
当k≤0,ex>0,可得f′(x)>0恒成立,f(x)递增,无最大值;
当k>0时,x>lnk时f′(x)>0,f(x)递增;x<lnk时f′(x)<0,f(x)递减.
即有x=lnk处取得最小值,且为k-klnk,
由k-klnk≥0,解得k≤e,
即k的最大值为e,
故答案为:e.

点评 本题考查不等式恒成立问题的解法,注意运用构造函数求最值,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设集合A={x|$\frac{{x}^{2}}{2}$+y2=1},B={y|y=x2-1},则A∩B=(  )
A.[-1,$\sqrt{2}$]B.{(-$\frac{\sqrt{6}}{2}$,$\frac{1}{2}$),($\frac{\sqrt{6}}{2}$,$\frac{1}{2}$)}
C.{(-$\frac{\sqrt{6}}{2}$,$\frac{1}{2}$),($\frac{\sqrt{6}}{2}$,$\frac{1}{2}$),(0,1)}D.[-$\sqrt{2}$,$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.(实验班)已知函数f(x)=x2+(a-2)x+1在区间(0,2)和(3,4)上分别存在零点,则实数a的取值范围为-$\frac{9}{4}$<a<-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=log2(x2+5x-6)的定义域是(  )
A.[-2,3]B.(-6,1]C.(-∞,-1)∪(6,+∞)D.(-∞,-6)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\frac{2x+1}{x-1}$,其定义域是[-8,-4),则下列说法正确的是(  )
A.f(x)有最大值$\frac{5}{3}$,无最小值B.f(x)有最大值$\frac{5}{3}$,最小值$\frac{7}{5}$
C.f(x)有最大值$\frac{7}{5}$,无最小值D.f(x)有最大值2,最小值$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数f(x)=ln(a+x)-ln(a-x)(a>0),若曲线y=f(x)在点(0,f(0))处的切线方程为y=2x.
(1)求a的值;
(2)已知x≥0时,求使f(x)≥2x+$\frac{2{x}^{3}}{3}$+M恒成立的实数M的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\left\{{\begin{array}{l}{{{(\frac{1}{2})}^x},x≥4}\\{f(x+1),x<4}\end{array}}$,则$f(2-{log_{\frac{1}{2}}}3)$=$\frac{1}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=loga$\frac{1-mx}{x-1}$(a>0且a≠1,m≠1)是奇函数.
(1)求实数m的值;
(2)判断函数在(1,+∞)上的单调性,并证明;
(3)当a=3时,不等式f(x)<3x-t对任意x∈[2,3]恒成立,求t的取值范围;
(4)当x∈(n,a-2)时,函数f(x)的值域是(1,+∞),求实数a与n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)已知正数a,b满足a+4b=4,求$\frac{1}{a}$+$\frac{1}{b}$的最小值.
(2)求函数f(k)=$\frac{\sqrt{{k}^{2}+2}}{{k}^{2}+6}$的最大值.

查看答案和解析>>

同步练习册答案