精英家教网 > 高中数学 > 题目详情
2.已知集合A={x|x2+2x+m=0},集合B={-1,4},如果A∩B=A且A≠B,求实数m的取值范围.

分析 利用已知条件判断A的可能情况,范围求解m的范围.

解答 解:集合A={x|x2+2x+m=0},集合B={-1,4},如果A∩B=A且A≠B,
可知A是{-1}或{4}或∅.
x2+2x+m=0可得△=0,即4-4m=0,解得m=1,此时A={-1}.
当△=4-4m<0,解得m>1.
综上m≥1.
故答案为:[1,+∞).

点评 本题考查集合的基本关系的运算,考查分类讨论思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.表是某市从3月份中随机抽取的10天空气质量指数(AQI)和“PM2.5”(直径小于等于2.5微米的颗粒物)24小时平均浓度的数据,空气质量指数(AQI)小于100表示空气质量优良.
日期编号A1A2A3A4A5A6A7A8A9A10
空气质量指数(AQI)1794098124291332414249589
PM2.5日均浓度(ug/m313558094801001903877066
(1)根据表数据,估计该市当月某日空气质量优良的概率;
(2)在表数据中、在表示空气质量优良的日期中,随机抽取两个对其当天的数据作进一步的分析,设事件M为“抽取的两个日期中,当天‘PM2.5’的24小时平均浓度小于75ug/m3”,求事件M发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知经过点M(4,0)的直线交抛物线y2=4x于A、B两点,则以线段AB为直径的圆与原点的位置关系是(  )
A.原点在圆内B.原点在圆上C.原点在圆外D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足na1+(n-1)a2+…+2an-1+an=n2(n+1),数列{bn}满足:b1=2,且11bn+1-10bn-1=0.
(I)证明:数列{bn-1}等比;
(Ⅱ)求数列{an}的通项;
(Ⅲ)若cn=$\frac{10}{11}$an•(bn-1),求cn最大时的n值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知抛物线y=$\frac{1}{2}$x2+bx+c与y轴相交于C,与x轴相交于A,B,点A的坐际为(2,0),点C的坐标为(0,-1).
(1)求抛物线的解析式:
(2)点D是该抛物线上位于A,C之间的一动点,求△ADC面积的最大值,并求出此时点D的坐标;
(3)在直线BC上是否存在一点P,使△ACP为等腰三角形?若存在,请求出点P的坐际;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.直线y=k(x-3)+4与曲线y=1+$\sqrt{4-{x}^{2}}$有一个交点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点F1(-3,0)和点F2(3,0)是椭圆的两个焦点,且点(0,4)在椭圆上.
(1)求椭圆的方程;
(2)设点P是椭圆上的一点,若|PF1|=4,求以线段|PF2|为直径的圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.过点A(2,-1)和B(4,5)的直线方程是3x-y-7=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.log63•log612+(log62)2-27${\;}^{\frac{2}{3}-lo{g}_{3}2}$=-8-${log}_{3}^{2}$.

查看答案和解析>>

同步练习册答案